مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۴ مطلب با کلمه‌ی کلیدی «ضریب اضافه مقاومت» ثبت شده است

بند 3-3-5-9 استاندارد 2800 مربوط به ترکیب سیستم ها در ارتفاع: (حالت کلی)
- اگر ضریب رفتار قسمت پایینی بیشتر از قسمت بالایی باشد، ضریب رفتار، ضریب بزرگنمایی جابجایی و همچنین ضریب اضافه مقاومت قسمت فوقانی ملاک تعیین نیروی جانبی کل سازه قرار گیرد.
به عنوان مثال: در یک سازه قسمت پایینی قاب خمشی فولادی با شکل‌پذیری ویژه و قسمت بالایی قاب مهاربندی شده همگرای ویژه استفاده شده است.
مشخصات سیستم بالایی:
R = 5.5
Omeaga0 =2
Cd = 5.0
مشخصات سیستم پایینی:
R = 7.5
Omeaga0= 3
Cd = 5.5
در این حالت بایستی ضریب رفتار، ضریب بزرگنمایی جابجایی و همچنین ضریب اضافه مقاومت قسمت فوقانی ملاک تعیین نیروی جانبی کل سازه قرار گیرد.
- اگر ضریب رفتار قسمت پایینی کمتر از قسمت بالایی باشد، ضریب رفتار، ضریب بزرگنمایی جابجایی و همچنین ضریب اضافه مقاومت قسمت فوقانی ملاک تعیین نیروی جانبی قسمت بالایی قرار گیرد. برای تعیین نیروی جانبی قسمت پایینی همین نیروها ولی حالت نیروی عکس العمل ناشی از تحلیل قسمت فوقانی نیز در نسبت Ru/Rho قسمت فوقانی به Ru/Rho قسمت تحتانی ضرب شده اند باید به مدل سازه قسمت تحتانی اضافه شوند. این نسبت در هر حال نباید از 1 کمتر باشد.
به عنوان مثال: در یک سازه قسمت پایینی قاب مهاربندی شده همگرای ویژه و قسمت بالایی قاب خمشی فولادی با شکل‌پذیری ویژه استفاده شده است.
مشخصات سیستم پایینی:
R = 5.5
Omeaga0 =2
Cd = 5.0
مشخصات سیستم بالایی:
R = 7.5
Omeaga0 = 3
Cd = 5.5
در این حالت بایستی ضریب رفتار، ضریب بزرگنمایی جابجایی و همچنین ضریب اضافه مقاومت قسمت فوقانی ملاک تعیین نیروی جانبی قسمت بالایی قرار گیرد. نیروی برش بخش بالایی باید با نسبت (7.5/5.5)=1.36 به بخش پایینی انتقال داده شود. (با فرض ضریب نامعینی هر دو بخش برابر یک).
توجه: آییننامه ASCE7 برای سازه‌ای که بخش بالایی آن قاب خمشی با شکل‌پذیری ویژه استفاده شده باشد و بخش پایینی سختی زیادی داشته باشد، سخت گیری زیادی نشان داده و استفاده از این سیستم را برای طبقه بندی لرزه ای D به بالا ممنوع میکند.
 

 ASCE7-10
12.2.5.5 Special Moment Frames in Structures Assigned to Seismic Design Categories D through F
For structures assigned to Seismic Design Categories D, E, or F, a special moment frame that is used but not required by Table 12.2-1 shall not be discontinued and supported by a more rigid system with a lower response modification coefficient, R, unless the requirements of Sections 12.3.3.2 and 12.3.3.4 are met. Where a special moment frame is required by Table 12.2-1, the frame shall be continuous to the base.

 
علت این سخت‌گیری می‌تواند احتمال وقوع رفتارهای غیرارتجاعی در بخش‌هایی پایینی سازه باشد که در این بخش، از سیستم با شکل‌پذیری کمتری استفاده شده است و سیستم با شکل‌پذیری بالا (قاب خمشی با شکل‌پذیری ویژه) را در بخش بالایی استفاده نموده‌ایم که احتمال تشکیل مفاصل پلاستیک در آن ناحیه کمتر است.
 
منبع: کانال دکتر علیرضایی
 
http://etabs-sap.ir/%d8%a8%d9%86%d8%af-%db%b3-%db%b3-%db%b5-%db%b9-%d8%aa%d8%b1%da%a9%db%8c%d8%a8-%d8%b3%db%8c%d8%b3%d8%aa%d9%85-%d9%87%d8%a7-%d8%af%d8%b1-%d8%a7%d8%b1%d8%aa%d9%81%d8%a7%d8%b9/
 
http://etabs-sap.ir/2800-combining-seismic-resisting-systems/
  • مهندس علیرضا خویه

در طراحی لرزهای، اهمیت حداکثر تنش تسلیم احتمالی (تنش تسلیمی که در واقعیت رخ می‌دهد) با حداقل تنش تسلیم (تنش تسلیمی که در تئوری در نظر گرفته می‌شود) برابر است. مطالعات اخیر نشان میدهد که حاشیهای بین مقاومت تسلیم میانگین واقعی و مقاومت تسلیم مشخصه وجود دارد. برای مثال در چند دهه گذشته برای فولاد ASTM-36 مقاومت های تسلیمی از 270 مگاپاسکال تا 225 مگاپاسکال گزارش دادهاند. این مقاومت افزون، در برخی از المانهای لرزهای، بخصوص المانهایی که به صورت فیوز عمل میکنند بایستی به دقت بررسی شود. زیرا که برای جذب انرژی در این المانها، میزان تنش تسلیم بایستی به صورت معینی تعیین شود تا زودتر از بقیه قسمتهای سازه وارد حوزه خمیری شوند.
کاربرد اصلی Ry در طرح لرزه‌ای، در طراحی اعضایی است بایستی برای ظرفیت فیوزهای سازه‌ای طراحی شوند. مثلا اگر بخواهیم یک اتصال مهاربند همگرا را طراحی کنیم، نیروی طراحی برابر حداکثر ظرفیت مورد انتظار مهاربند در کشش است که برابر RyFyAg می‌شود. ضریب Ry برای مورد انتظار نمودن تنش تسلیم است. یعنی اگر در طراحی Fy=240 MPa در نظر گرفته شود و در عمل مقدار Fy بیشتر از 240 MPa شود و نیروی بیشتری به اتصال آن در حین جاری شدن وارد شد، آن اتصال قوی تر از خود مهاربند طراحی شده باشد. برای این منظور بایستی در طراحی اتصال، از تنش تسلیم محتمل یعنی Ry برابر Fy استفاده شود. این اضافه مقاومت به سبب افزودنی‌هایی مانند آهن قراضه و همچنین پروسه تولید و نوردکاری ایجاد می‌شود. آیین نامه های طراحی ضریبی را با عنوان Ry که برای هر مقطعی متفاوت است در نظر میگیرند. بایستی مقاومت مورد انتظار اجزای کنترل شونده توسط جابجایی را در طراحی اعضای کنترل شوند توسط نیرو بکار برد. طبق آیین‌نامه AISC تنش تسلیم و تنش نهایی مورد انتظار با ضرب Ry و Rt به ترتیب در تنش تسلیم حداقل و تنش نهایی حاصل می‌شود.
Expected Yield Strength = Ry Fy
Expected Tensile Strength= Rt Fu
همچنین #مبحث_دهم مقداری را برای Rt ارائه نمی‌دهد.
در ETABS 9.7.4 امکان تعریف این پارامتر در مصالح وجود ندارد ولی می‌توانید با انتخاب اعضا، این ضریب را به آنها اختصاص دهید. بشرطی که آیین‌نامه AISC360-05 را انتخاب کرده باشید، با انتخاب مقطع مورد نظر و استفاده از مسیر Design menu > Steel Frame Design > View/Revise Overwrites میتوانید از بخش Overstregth factor, Ry مقدار ضریب Ry را وارد نمایید تا به آن مقطع اختصاص یابد.
@AlirezaeiChannel

  • مهندس علیرضا خویه

پرسش و پاسخ مهندسی

مهندس علیرضا خویه | | ۰ نظر

سلام خدمت استاد گرامی

در تعیین ضریب رفتار سازه ها آیین نامه حداکثر ارتفاع را برای هر سیستم سازه ای مشخص کرده،آیا دو سازه با سیستم باربر یکسان ولی ارتفاع متفاوت مثلا ۱۵ متر و ۵۰ متر میتوانند ضریب رفتار یکسان داشته باشند؟

درصورتی که در سازه های کوتاه نسبت به سازه های بلندمرتبه، تلاش های داخلی در اعضا اختلاف خیلی زیادی ندارند و بیشتر مقاطع میتوانند به حد تسلیم برسند و از حداکثر ظرفیت سازه نسبت به سازه های بلند مرتبه میتوان استفاده کرد.پس عملا باید ضریب رفتارها متفاوت باشند

میخواستم نظر شما را در این مورد بدانم

تشکر از وقتی که برای بنده گذاشتین

 

پاسخ:,

ضریب رفتار، یکی از پارامترهای مهم در محاسبه بارهای تأثیر‏گذار بر سازه، ناشی از زلزله‏های شدید است. این ضریب دارای پیچیدگی‏های خاصی بوده و به عوامل مختلفی بستگی دارد. محاسبه ضریب رفتار به عنوان عاملی که در بر گیرنده عملکرد غیرارتجاعی سازه‌ها در برابر زلزله‌های شدید است، کاربرد وسیعی در آیین‌نامه‌ها، برای تعیین مقاومت ارتجاعی مورد نیاز سازه‌ها دارد. هر چه مقدار این ضریب به واقعیت نزدیک‌تر باشد، تعیین مقاومت مورد نیاز سازه، دقیق‌تر خواهد بود. ضریب رفتار سازه‌ها به عوامل مختلفی بستگی دارد. این نسبت در واقع، نسبت بین مقاومت مورد نیاز برای ماندن سازه در حوزه ارتجاعی به مقاومت مورد نیاز آن در حوزه فرا ارتجاعی است. در حالتی که از روش طراحی مقاومت نهایی یا حالات حدی، جهت طراحی یک سازه استفاده می‌شود، ضریب رفتار را می‌توان بصورت زیر خلاصه نمود:

R=Rmu*Omega0

که در رابطه فوق، Rmu تحت عنوان ضریب رفتار شکل‌پذیری شناخته شده و تابعی از شکل‌پذیری سیستم سازه‌ای، دوره تناوب سازه، میرایی و مشخصات جنبش زمین و ... است. پس نه تنها ضریب رفتار به ارتفاع سازه بستگی دارد بلکه به پارامترهای دیگر از جمله مشخصات زمین نیز وابسته است. این پارامتر به نوعی نسبت مقاومت مورد نیاز برای ماندن سازه در حوزه ارتجاعی به مقاومت تسلیم آن است. همچنین پارامتر Omega0، که تحت عنوان ضریب اضافه مقاومت شناخته می‌شود، در بر گیرنده عواملی همچون بازتوزیع نیروها، جزئیات اجرایی، سخت شوندگی مصالح و ... است. ضریب اضافه مقاومت بصورت نسبت مقاومت تسلیم بر مقاومت طراحی تعریف می‌شود. در مطالعات Miranda و Bertero مقدار ضریب رفتار شکل‌پذیری تابعی از دوره تناوب، نوع خاک و شکل‌پذیری سیستم معرفی شد. برای دیدن جزئیات بیشتر، مراجع زیر پیشنهاد می‌شود:

Miranda, E., & Bertero, V. V. (1994). Evaluation of strength reduction factors for earthquake-resistant design. Earthquake spectra, 10(2), 357-379.

Uang, C. M. (1991). Establishing R (or Rw) and Cd factors for building seismic provisions. Journal of Structural Engineering, 117(1), 19-28.

 


سلام استاد.وقت بخیر. فلسفه کنترل ستونها ی باربر جانبی برای بار محوری تشدید یافته چیه، اونم بدون در نظر گرفتن لنگر خمشی و نیروی برشی برای ستونهای قاب خمشی ؟(در واقعیت که همیشه لنگر وجود داره). ممنون

 

پاسخ:,

فلسفه اعمال ضریب اضافه مقاومت، افزایش سطح نیروی طراحی اجزایی از سازه که انتظار میرود، در آخرین مراحل وارد فاز غیرارتجاعی شوند (مثلا ستونها). در این حالت طبق ضوابط تنها نیروی محوری تشدید یافته میشود زیرا نیروی محوری مولفه غیرشکل پذیر عضو بوده و آیین نامه برای دوری از آن ضریب تشدید را تنها در نیروی محوری ضرب میکند.


با سلام و عرض خسته نباشید

ببخشید استاد در خصوص محاسبه لنگر مقاوم ِ رابطه ی لنگر واژگونی، باید جرم موثر را در نظر بگیریم و یا جرم کل ؟

سوالی دیگر

با توجه به اینکه در محاسبه نیروهای جانبی زلزله، جرم موثر در تعیین نیروها تاثیر گذار است اما در نیروی باد اینگونه نیست، آیا در محاسبه لنگر مقاوم در این دو حالت تمایزی وجود  دارد؟

با تشکر فراوان

 

پاسخ

سلام. بایستی جرم لرزه‌ای ملاک تعیین لنگر مقاوم و واژگونی قرار گیرد. ماهیت اعمال بار باد و زلزله متفاوت است. برخلاف نیروهای ناشی از باد بر سازه، نیروهای زلزله کاملاً ماهیتی داخلی دارند و وقتی به آنها عنوان نیرو داده می‌شود، نبایستی با نیروهایی که بر روی سازه قرار داده شده و سازه تحت آنها تحلیل می‌شوند اشتباه گرفته شوند. نیروهای خارجی ناشی از باد در سطح جانبی ساختمان اثر کرده و موجب فشردگی آن وجه از سازه می‌شوند. این نیروها را می‌توان به صورت متمرکز در مرکز سطح بادخور در نظر گرفت. همچنین نیروهای ناشی از زلزله به صورت رفت و برگشت می‌باشند ولی نیروهای ناشی از باد در یک جهت اعمال می‌شوند. هر دو نیروی ناشی از باد و زلزله دارای ماهیتی کاملاً دینامیکی می‌باشند.

 

 


 

1-حل سوال بالا چگونه می باشد؟

 

مقدار شتاب طیفی در دوره تناوب صفر در واقع همان A است. یعنی مقدار A حاصل از طیف ویژه ساختگاه 0.27g است. دوره تناوب سازه برابر است:

T=0.05H^0.9=0.05*14^0.9=0.36 sec

بنابراین طیف آن در شاخه وسطی قرار می‌گیرد. از پیوست 1 استاندارد 2800، مقدار A=0.35 و برای خاک نوع دو B=2.5 بدست می‌آید. بنابراین طبق استاندارد 2800:

AB=0.35*2.5=0.875

حال طبق طیف ویژه ساختگاه مقدار AB برای شاخه میانی 0.67 است. طبق بند 2-5-2 استاندارد 2800، مقدار طیف ویژه نباید از 80% طیف استاندارد 2800 کمتر باشد.

0.8*0.875=0.7>0.67

بنابراین بایستی مقدار 0.7 را که 80% مقدار طیف استاندارد 2800 است را استفاده کنیم. زیرا اگر با 0.67 کار کنیم از 80% طیف استاندارد کمتر میشود. مقدار ضریب رفتار این سیستم R=7.5 و ضریب اهمیت آن I=1.4 است. بنابراین:

C=(ABI/R)*W=(0.7*1.4/7.5)W=0.13W

بنابراین جواب یک درست است.

 


سلام استاد گرامی. در قسمت Steel section database   چه عنوان رو باید انتخاب کرد و بنظرتون انتخاب بهترین آیین نامه کدام است هم برای فولاد و هم بتن ؟

 

پاسخ

در بخش Use Built-In Settings With گزینه‌های زیر پیشنهاد می‌شود:

در بخش Display Units : گزینه Metric MKS را انتخاب کنید.

در بخش Steel Section Database گزینه Euro: European steel shapes را انتخاب کنید تا به مقاطع و پروفیل‌های ایرانی درستی داشته باشید.

در بخش Steel Design Code بهترین آیین‌نامه که با مبحث دهم منطبق باشد، AISC360-10 است.

در بخش Concrete Design Code بهترین آیین‌نامه که با مبحث نهم منطبق باشد، ACI318-14 است. البته در حال حاضر مبحث نهم طبق آیین‌نامه کانادا است ولی توصیه می‌کنیم از ACI استفاده کنید.

 

 


سلام استاد گرامی. موقع مدل سازی ساختمان بتنی در ایتبس اگر از حالت Desigend بجای Checked استفاه شود. آیا باز هم زمان تعریف مقطع ستون باید تعداد و سایز آرماتور ها را مشخص کرد؟

 

در این حالت فقط میزان کاور بتن مهم است و تعداد آرماتورهای تعریف شده اثری بر روند طراحی ندارد

 

منبع: کانال دکتر علیرضایی

  • مهندس علیرضا خویه

 ضریب اضافه مقاومت ( امگا صفر ) که در جدول ضریب رفتار آئین نامه 2800 ویرایش چهارم آمده است به چه منظوری است و در کجا مورد استفاده قرار میگیرد؟؟؟

تجربه نشان داده که کلیه سازه‌ها در برابر بارهای وارده مقاومتی بیشتر از مقاومت طراحی از خود نشان می‌دهند. دلیل این امر وجود ذخیره مقاومتی قابل توجهی است که در طراحی سازه‌ها لحاظ نشده است، این مقاومت ذخیره به نام مقاومت افزون شناخته میشود و به عنوان یکی از عوامل موثر بر ضریب رفتار، بر ایمنی و اقتصاد طراحی تاثیر گذاشته است. عامل باز توزیع نیروهای داخلی را می‌توان برای کاهش نیروهای طراحی مورد استفاده قرار داد. طبق اکثر آیین‌نامه‌های مدرن طراحی سازه‌های فولادی، مقدار مقاومت #افزون برای #سیستم‌های مهاربندی (طبق مبحث دهم) برابر 2 می‌باشد (به جدول 10-3-2 مبحث دهم مراجعه نمایید). طبق فلسفه طراحی #لرزه‌ای سازه‌ها، #فیوزهای یک سازه (مکان‌هایی که قرار است جاری شده و انرژی ورودی زلزله را مستهلک کنند) بایستی ضعیف‌ترین جزء قاب باشند تا بتوانند وظیفه خود را بخوبی انجام دهند. لیکن به دلایل فراوان تمایلی به ایجاد مفصل خمیری در ستون‌ها، اتصالات و برخی نقاط دیگر سازه وجود نداریم. برای در امان ماندن ستون‌ها از جاری شدن (در صورت ایجاد مفصل خمیری در ستون‌ها به سبب نیروی محوری زیادی که دارند احتمال ناپایداری سازه و شکست ترد وجود دارد) بایستی ستون‌ها قوی‌تر از بقیه اجزا طراحی شوند. بدین منظور #آیین‌نامه‌ها بجای طراحی ستون‌ها در سطح نیروی Cs یا Cw، (نیروی تجویز شده از طرف #آیین‌نامه) آنها را برای سطح نیروی Cy طراحی می‌نمایند. بطور کلی این ضریب در نیروی زلزله طراحی اجزایی که می‌خواهیم جاری نشوند یا در آخرین مرحله جاری شوند، بکار می‌رود.

 



برخی از اساتید و مهندسان ضریب اومگا و یا نامعینی را در ضریب زلزله ضرب میکنند این عمل درست هست ویا در loade case هم ضرب میکنند من این کارو انجام دادم برش پایه به اندازه ضریبی که اعمال کردم افزایش یافت و با توجه به اینکه اعمال ضریب نامعینی و اومگا در نرم افزار در قسمت طراحی می باشد یعنی وقتی ما در قسمت تنظیمات ایین نامه ضریب اومگا و نامعینی را اعمال میکنیم در برش پایه و نتایج تحلیل تغییری ایجاد نمیشه ودر طراحی تغییراتی ایجاد میشه این سوال برام پیش اومد که ما فقط میتونیم در ترکیبات بار اعمال کنیم این ضرایب را نه در ضریب زلزله و loade case کنیم یعنی خود نرم افزار در قسمت طراحی این ضررایب را تنظیم میکند نه در تحلیل این درست هست یا نه ؟ و توضیح کاملی در مورد این مطلب بفرمایید خیلی ممنون

 

درستش اینه که در ترکیب بارها ضرب کنید. اعمال این ضریب ها در ضریب زلزله باعث ایجاد محافظه کاری در طراحی میشود. مثلا اثرات ناشی از P-Delta که نیازی نیست در ضریب Rho ضرب شود و یا در کنترل جابجایی سازه، نیازی به اعمال ضریب نامعینی نیست.


 

-باتوجه به پستهای قبلی مبنی برهشداردر مورد استفاده از اومگا0 و ازبین رفتن ضرایب 0.3 شماکدام روش رو بعنوان بهترین روش اعمال اوگا0 پیشنهادمیدهید؟ایا Exall+0.3E بعنوان یک load case  ساخته شود که اومگا در این مجموع ضرب شود؟یا اینکه ترکیب بارهایی بر اساس اومگاساخته شود؟یااینکه اومگا در ضرایب c زلزله ضرب شود؟درصورتیکه در دوجهت سازه دارای دو سیستم مختلف با دو نوع اومگا0 بودیم بهترین روش کدام است؟

- توصیه نمیکنم ضریب امگا در c ضرب شود. میتوانید از حالت تحلیل Exall+0.3E استفاده کنید یا اینکه ضریب امگا را در ترکیب بارها دستی وارد کنید و خودتان ستون ها را چک کنید.

 

منبع: کانال دکتر علیرضایی

  • مهندس علیرضا خویه