مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۲۰ مطلب با کلمه‌ی کلیدی «اموزش ایتبس تصویری» ثبت شده است

ضابطه طراحی راه_پله ها مطابق پیوست 6 آیین_نامه_2800 :
 در پله هایی که جزئی از سازه اصلی ساختمان میباشند، در صورت اتصال راه پله ها به قاب سازه ای باید اثر آن در باربری لرزه ای و نیروهایی که به تیر و ستون اطراف آن بر اثر این باربری وارد میشود ، لحاظ شود. در این حالت لازم است اجزای راه پله شامل شمشیری ها ، دال بتنی پله و پاگردها مدل سازی شوند. در این خصوص لازم است یک بار سازه بدون لحاظ نمودن سختی اجزای پله ، مدل و طراحی شود تا سیستم باربر جانبی سازه به تنهایی قادر به تحمل کل نیروی زلزله طرح باشد و یکبار هم با مدل کردن اجزای پله و در نظر گرفتن تاثیر سختی آن ، سازه مورد بررسی مجدد قرار گرفته و اجزای پله نیز تحت نیروهای ایجاد شده در آنها طراحی شوند.

باید توجه شود که در سازه های بتنی اجزای تیر و اتصال دال راه پله در تراز پاگرد میان طبقه باعث ایجاد ستون_کوتاه در ستون های مجاور راه پله میشود. جهت جلوگیری از تشکیل ستون کوتاه میتوان به جای اجرای تیر نیم طبقه ، آن را در همان تراز طبقه اجرا نمود و بر روی آن دو ستونک اجرا کرد. سپس بر روی این ستونک ها تیری اجرا شود که به ستون های اطراف متصل نبوده و انتهای آن با ستون های اطراف ، فاصله ای حداقل به اندازه 0.01 ارتفاع طبقه دارد.

نهایتاً دال پله و پاگردها در تراز نیم طبقه به این تیر قرار گرفته بر روی ستونک ها متصل میشوند. لازم به ذکر است تیر نشیمن قرار گرفته در تراز طبقه که ستونک ها بر روی آن قرار دارند بایستی تحت پیچش ایجاد شده ناشی از بارهای ثقلی و لرزه ای طراحی شوند. اعمال ضریب کاهش سختی_پیچشی بر روی این تیر مجاز نیست

تصاویر اجرایی:

  • مهندس علیرضا خویه

دفترچه راهنمای نکات حائز اهمیت در محاسبات و نقشه های سازه

 
  •  دفترچه محاسبات نظام مهندسی تهران
  •  Rahnama Nezam Tehran 961209[Etabs-SAP.ir].pdf
  •  5.34 مگابایت
  • مهندس علیرضا خویه

فایل های نظام مهندسی استان اصفهان

راهنمای طراحی سازه در نرم افزار Etabs 

نظام مهندسی اصفهان

راهنمای طراحی سازه در Etabs نظام مهندسی اصفهان

 
  •  دانلود PDF آموزش طراحی سازه در Etabs
  •  rahnama-esfahan[Etabs-SAP.ir].pdf
  •  3.19 مگابایت
  • مهندس علیرضا خویه

کاور بتن

مهندس علیرضا خویه | | ۰ نظر

پوشش بتنی میلگردها عبارتست از :

  • حداقل فاصله رویه میلگرد اعم از طولی و عرضی تا نزدیک‌ترین سطح بتن.

-پوشش بتن، حفاظت فولاد را در مقابل عوامل طبیعى، اکسیده شدن و تأثیـر مواد شیمیائـى و همچنین حریق، به عهده دارد.

-نظر به اهمیت این پوشش در حفظ و نگهداری میلگردها و نهایتاً عمر مفید سازه بتنی، پیمانکار باید نهایت دقت را در نصب میلگرد و نیز ریختن و متراکم نمودن بتن به عمل آورد تا باعث جابه‌جایی و تغییر محل آرماتورها نگردد.

-مقـدار این پوشش در آئین نامه بتـن مسلح هر کشورى فرق مى کند.

میزان کاور بتن بسته به نوع قطعه و شرایط محیلی می تواند متفاوت باشد

پوشش بتن در آیین‌نامه‌های ساختمانی

کشور آیین‌نامه بتنی محدودهٔ پوشش بتن (میلی‌متر)
بریتانیا ۲۵-۵۰
اروپا (EN 1992 (EC2 قطر+۱۰-۵۵
ایالات متحده ACI:318 ۴۰-۵۰
استرالیا AS:3600 ۱۵-۳۰

عدم رعایت کاور ،خطر زنگ زدگی و شتاب در اکسیداسیون میلگرد و تخریب بتن

کاور ها را می توان با اسپیسر ها و قطعات بتنی ساخته شده در کارگاه و یا قطعات پلاستیکی که در بازار موجود می باشد، تامین کرد که هرکدام مزایا و معایب خود را دارند

این اسپیسرها در کارگاه ساخته می شود و معمولا در لیوان های پلاستیکی برای ساخت آن ها استفاده می شود، حتما از یک سیم مفتول به شیوه ای که در تصویر مشخص است باید استفاده گردد و در واقع سیم اسپیسر میبایست به آرماتور درونی متصل شود

مزیت های اسپیسرهای بتنی:

 مقاومت فشاری بالا و مقاوم در برابر له شدگی
تعداد کمتر اسپیسر مورد استفاده در سازه به ازاء هر متر مربع نسبت به اسپیسرهای پلاستیکی
انتقال ایمن نیروهای استاتیکی به بتن
پیوستگی عالی با بتن. پیوستگی بسیار بالای بتن به بتن به نحوی که هیچ شکاف مویی بین اسپیسر و بتن مجاور آن شکل نمی گیرد.
نفوذ ناپذیری بسیار بالا در برابر آب و کلراید آهن
مقاومت فیزیکی و شیمیایی بسیار بالا
مقاومت بالا در برابر حرارت و آتش مطابق با بالاترین سطح الزامات تعیین شده در EN135001-1:2002 class1
تولرانس ابعادی دقیق و ثابت و عدم شکل پذیری در برابر نوسنات دمایی
نصب سریع و آسان به همراه حالات مختلف تثبیت
قابلیت تولید در اشکال و ابعاد مختلف و در زمان کوتاه
صرفه بیشتر اقتصادی با کاهش هزینه های خرید اسپیسر و هزینه های ناشی از عیوب استفاده اسپیسرهای پلاستیکی (در بالا ذکر گردید) که موجب کاهش عمرمفید سازه می گردند.

اسپیسرهای پلاستیکی:

سعی شود از اسپیسر مرغوب استفاده شود.تعداد آن به اندازه کافی باشدبطوری که وزن افرادروی سقف و ویبراتور در زمان بتن ریزی لحاظ شود.اسپیسرهای شکسته با هر روشی تعویض گردد.

مقدار کاور بتن در تیر و ستون در Etabs

در ETABS 9 برای وارد کردن مقدار کاور گزینه Cover to Rebar Center وجود دارد. در این حالت از شما فاصله لبه مقطع تا مرکز آرماتورهای طولی پرسیده می‌شود. مثلا اگر قطر خاموت 10 میلیمتر، قطر آرماتور طولی 20 میلیمتر باشد، با فرض کاور خالص 4.5 cm برای مقطع بایستی عدد زیر وارد شود:
Cover to Rebar Center=4.5+1.0+(2.0/2)=6.5 cm
در حالت خاصی که آرایش میلگردها در مقطع مستطیلی، بصورت دایره‌ای باشد، این فاصله حداقل فاصله بین لبه مقطع تا مرکز آرماتورهای طولی ستون است.


در ETABS 2016 برای وارد کردن کاور گزینه Clear Cover for Confinement Bars در دسترس است. این گزینه فاصله لبه مقطع تا بیرون آرماتورهای خاموت مقطع است. مثلا اگر قطر خاموت 10 میلیمتر، قطر آرماتور طولی 20 میلیمتر باشد، با فرض کاور خالص 4.5 cm برای مقطع بایستی عدد زیر وارد شود:
Cover to Rebar Center=4.5 cm

معمولا در ستون های بتنی به سیله میلگرد رامکا سعی در رعایت کاور بتن دارند که این امر به دلیل وجود میلگرد در کاور دارای اشکال بوده و صحیح نمی باشد.

 

  • مهندس علیرضا خویه

دانلود رایگان PDF کتاب ارزشمند آموزش Etabs و SAFE

نکات مدلسازی و طراحی سازه های فولادی و بتنی در Etabs

نویسنده : دکتر مسعود حسین زاده اصل

  •  آموزش کامل طراحی سازه فولادی و بتنی در Etabs
  •  ETABS-Learning-pdf-99-1[Civil.blog.ir].zip
  •  60.5 مگابایت
  • تعداد صفحات: 800

فهرست مطالب

  • مهندس علیرضا خویه

دوره مقدماتی و پیشرفته Etabs

مهندس علیرضا خویه | | ۰ نظر

دوره مقدماتی آموزش Etabs

۱)معرفی نرم افزار های مهندسی عمران و علت استفاده از نرم افزار Etabs
۲) نصب و راه اندازی نرم افزار ایتبس
۳) واحد های اندازه گیری بین المللی
۴)آیین نامه های طراحی سازه ها
۵)ساخت خطوط کمکی متقارن و نامتقارن در پلان
۶)ساخت خطوط کمکی طبقات سازه و تنظیمات طبقات
۷)تنظیمات گرافیکی نرم افزار
۸)معرفی مصالح بتن،فولاد و انواع میلگرد ها
۹)ساخت و تعریف المان های تیر فولادی و بتنی
۱۰)ساخت و معرفی المان های ستون فولادی و بتنی
۱۱) تعریف انواع سقف ها و دیافراگم ها
۱۲) بارگذاری سازه و مفاهیم
۱۳) بارگذاری زلزله
۱۴) معرفی جرم لرزه ای سازه
۱۵)اثر پی-دلتا و آنالیز مودال سازه
۱۶) ترکیبات طراحی سازه و سطح بهره برداری
۱۷) ترک خوردگی و اعمال آن بر المان ها
۱۸)معرفی و کاربرد آیکون های مدل سازی سازه
۱۹)مدل سازی سازه
۲۰) اعمال بارگذاری بر سازه و راه پله
۲۱)معرفی انواع سیستم های باربر جانبی لرزه ای متداول
۲۲)تنظیمات طراحی سازه
۲۳) کنترل لرزه ای سازه
۲۴)کنترل سطح بهره برداری
۲۵)طراحی اتصالات پیچی و جوشی
۲۶)تهیه دفترچه محاسبات سازه
۲۷)معرفی انواع فونداسیون ها و ژئوتکنیک لرزه ای
۲۸)تحلیل و طراحی فونداسیون های نواری و رادیه در Safe 2016
۲۹)تهیه دفترچه محاسبات فونداسیون
۳۰)اصول تهیه نقشه های اجرایی سازه

دوره پیشرفته آموزش Etabs

۱)رفتار خطی و غیر خطی بتن و فولاد
۲)خزش و انقباض در بتن
۳)تحلیل دینامیکی طیفی و مفاهیم آن
۴)شتابنگاشت ها و مقیاس کردن آنها
۵)معرفی نرم افزار Seismo signal
۶)تحلیل تاریخچه زمانی و مفاهیم آن
۷)بررسی و کنترل ارتعاشات در سازه
۸)انواع سیستم های لرزه برجانبی ویژه
۹)مفاهیم طراحی لرزه ای سازه های بتنی و فولادی
۱۰)تیر پیوند و اتصالات صلب از پیش تایید شده
۱۱)مباحث خاص در سازه های فولادی و بتنی
۱۲) میراگر ها و مدل سازی در ایتبس
۱۳)جداساز لرزه ای و مدل سازی در ایتبس
۱۴)سازه های بلند و بسیار بلند و سیستم های سازه ای آنها
۱۵)بهسازی لرزه الاستیک سازه
۱۶) بهسازی لرزه ای غیرالاستیک سازه
۱۷) آشنایی باFRPها و مدل سازی در ایتبس
۱۸)سازه های کامپوزیت
۱۹)تحلیل و طراحی یک سازه 20 طبقه

  • مهندس علیرضا خویه

برای تعیین صلبیت دیافراگم در برنامه SAP2000 یا ETABS ابتدا سقف را با المان Shell مدلسازی و آن را مش‌بندی نمایید (بسته به ابعاد مدل، ابعاد مش‌ها را تعیین کنید، ابعادی در حدود ۴۰ سانتیمتر، معمولاً مناسب است). به مانند نیروهای زلزله، بصورت گسترده یک بار جانبی دلخواه از یک جهت به دیافراگم اعمال نمایید (فرض کنید کنید که دیافراگم یک تیر عمق بوده که تحت بار گسترده خطی است). حال جابجایی تحت بار جانبی، برای دیافراگم و طبقه مربوط به آن دیافراگم قرائت شده و نسبت جابجایی دیافراگم به میانگین جابجایی طبقه تعیین می‌شود. در صورتی که این مقدار کمتر از ۰٫۵ باشد، دیافراگم صلب و اگر بیشتر از ۲ باشد، دیافراگم انعطاف پذیر است.

دانلود فیلم آموزشی
عنوان: تعیین صلبیت دیافراگم در etabs
حجم: 7.72 مگابایت

  • مهندس علیرضا خویه

مهارت های مهندسی خود را توسعه دهید

آموزش خصوصی نرم افزارهای مهندسی عمران

AutoCAD, Etabs , SAP2000

به صورت کاملا کاربردی و پروژه محور

مدرس: مهندس علیرضا خویه

آموزش Etabs+ کلاس ایتبس+آموزش خصوصی  اتوکد SAP2000

  • مهندس علیرضا خویه

shell , membrane , Plate

مهندس علیرضا خویه | | ۰ نظر

معرفی انواع المانهای دوبعدی ( )shell , membrane , Plateو تفاوت آنها و معرفی انواع روشهای ممکن برای مدلسازی دال سقف و دیوارهای برشی و مقایسه روشها
اگر یک صفحه دو بعدی را به صورت membraneمدل کنید، این صفحه فقط دارای مولفههای نیرویی فعال داخل صفحه مثل نیروی محوری ( f11و )f22و برش داخل صفحه مثل f21خواهد بود و مشابه المان خرپا در المانهای میلهای، در لبههای خود نمیتواند لنگر خارج صفحه تحمل کند و اگر باری عمود بر سطح آن اعمال شود، نرم افزار خطای ناپایداری خواهد داد، بنابراین هر گره المان با رفتار ،membraneفقط درجات آزادی انتقالی داخل صفحه و لنگر راستای داخل صفحه (جمعا سه درجه آزادی) خواهد داشت و عملاً لبهها مفصلی خواهند بود، لازم به ذکر است این به این معنی نیست که المان membraneهیچگونه سختی ندارد، بلکه بدین معنی است که فقط سختی داخل صفحه، یعنی سختی محوری و سختی برشی (سختی داخل صفحه) خواهد داشت. مطابق منوال نرم افزار، اگر دیوارهای برشی با membraneمدل شوند، در داخل صفحه فقط برش و لنگر و نیروی محوری میگیرد و لنگر خارج صفحه دیوار صفر خواهد شد یعنی خمش دیوار حول محور ضعیف مفصلی فرض خواهد شد که فرض منطقی هست. هر چند طراحان برای مدلسازی دیوار برشی از المان shellاستفاده می کنند.

حال اگر یک المان دوبعدی را با المان پلیت مدل کنید، این المان فقط دارای مولفه های نیرویی خارج صفحه مثل خمش خارج صفحه و برش خارج صفحه ( )
m11,m22,m12,v13,v23خواهد بود و این یعنی، المان فقط سختی خارج از صفحه داشته و نیروی محوری نخواهد گرفت. این المان برای مدلسازی ورقها تحت خمش خارج صفحه مناسب است. (مشابه المان تیر در دسته المان های میلهای) المان کلی دیگر که ترکیب کلی دو رفتار ( membraneغشایی) و plateاست، هم نیروی محوری میگیرد و هم خمش و برش خارج صفحه میگیرد و حالت کلیتری نسبت به دو المان صفحهای دیگر دارد، اگر با المان شل دیوار یا دال رو مدل کنید دقیق تر از دو المان دیگر است و هر دو را پوشش میدهد. (مانند المان تیرستون در دسته المانهای میلهای) اما نکته آن است که وقتی مثلا سقف با رفتار shellمدل میشود، چون دارای سختی خمشی است، بین دال و تیرها انتقال نیروی خمشی برقرار میشود و سختی خمشی دال با سختی اعضای قاب جمع میشود و عملا سختی جانبی سازه افزایش می یابد و بار جانبی را نیز جذب مینماید، اما وقتی دال را با رفتار membraneمدل کنید، سختی خمشی دال هیچ مشارکتی با اعضای قاب مثل تیرها نخواهد داشت و هیچ انتقال نیروی خمشی بین تیر و دال برقرار نبوده و در هر گره اتصال دال به تیر، کل نیروی داخلی به تیر میرسد و سختی خمشی دال به سختی سازه اضافه نمیشود (مانند تیر های افقی دو سرمفصل در سازه و یا ستون های دو سر مفصل که سختی آنها با سختی مجموعه سازه جمع نمیشود).

اما سوالی که در اینجا به ذهن میرسد این است که پس چرا طراحان سقف رو با رفتار
membraneمدل می کنند؟
جواب این سوال به روش سنتی طراحی برمیگردد، در گذشته طراحان همواره بار سقف رو به اعضای قاب منتقل میکردند و سختی سقف رو از تحلیل حذف میکردند و بعد تعیین نیروی داخلی تیر با کل بار روی سقف، در طراحی نیز کل نیرو رو به مجموعه تیر و دال میدادند و مقطع رو تی شکل طراحی میکردند. کار آنها در طراحی تحت بار ثقلی درست به نظر میرسد اما واقعا دال در سختی جانبی سازه مشارکت نمیکند و نیرو جذب نمیکند؟
جواب این است که در دهه گذشته که ضوابط آییننامهها برای طراحی لرزهای دال برای نیروهای دیافراگمی داخل صفحه، توسعه نیافته بود، به طور سنتی فرض میشد که سقف بعد از جذب نیروی زلزله در زمانهای اولیه ترک بخورد و دوسرمفصل شود و مجددا بار آن به کل قاب برگردد. با این دید سختی خمشی سقف رو در نظر نمیگرفتند و سقف رو هم برای نیرهای زلزله داخل صفحه آن طراحی نمیکردند در حال حاضر هم همین کار را انجام میدهند (هر چند ممکن است روش صحیحی نباشد چون در آیین نامه های فعلی ضوابط طراحی مدونی برای طراحی
دیافراگم ارائه شده است.)


به عنوان نکته پایانی از این بحث، توجه داشته باشید اگر سقف را به صورت شیبدار مدل کنید (مثل رمپ،) حتی اگر سقف به صورت
membraneمدل شود باز هم نیروی جانبی را به علت سختی محوری خود مانند بادبند جذب خواهد کرد، بنابراین اگر نمیخواهید به عنوان سیستم باربر جانبی روی رمپ حساب کنید، باید سختی محوری آن را نیز صفر دهید. اما جالب است بدانید چون این رمپ ها برای نیروی محوری که در آن ها در واقعیت رخ میدهد، طراحی نشده اند. در زلزله های واقعی اولین جاهایی که آسیب میبینند پله ها و رمپ ها هستند.
بهتر است در طراحی رمپها، بر روی جذب نیروی لرزهای آن حساب کرده و آنها را طراحی لرزهای نمایید (البته متاسفانه آییننامههای فعلی ضوابطی مدونی برای رمپها ندارند) و یا با دادن جزئیاتی، نیروی محوری آن را در واقعیت آزاد نمایید.
حال به نکته دیگری میپردازیم، در نرم افزار سپ اگر سقف را با رفتار
membraneمدل کنیم، آیا انتقال بار سقف به تیرهای مجاورش با استفاده از روش نیم سازها (تئوری لولای گسیختگی) خواهد بود؟ یا از روش تحلیل الاستیک؟ کدام دقیقتر است؟ در ایتبس چطور؟ تفاوت دو نرم افزار در چیست؟
 
در نرم افزار سپ در صورتی که بخواهید بار گسترده سقف به روش لولاهای گسیختگی به تیرهای مجاور خود انتقال یابد، علاوه بر اینکه سقف را باید به صورت membraneو در هر چشمه بدون مش تعریف کنید، بایستی بار گسترده سقف را هم با استفاده از ابزار اعمال بار ( shell uniform to frameدر منوی assign/area )loadبه آن اعمال نمایید و نحوه انتقال بار را نیز در این حالت میتوانید یکطرفه یا دوطرفه تعریف نمایید. با این کار نرم افزار سختی خمشی دال را در نظر نمیگیرد و بار سقف را هم کلا با روش نیمسازها به تیر میدهد (و نه به نسبت سختی بین دال و تیر) مانند اینکه دال سقف اصلاً وجود نداشته و تاثیری بر تحلیل ثقلی ندارد، در این حالت هیچ گونه نیرویی به دال نمیرسد و چون کل نیروی موجود به تیر رسیده است، برای طراحی مقطع به صورت واقع بینانه تی شکل، کافیست نیروهای داخلی تیر را به تنهایی در نظر گرفته و برای طراحی مقطع مشترک تیر-دال استفاده نماییم (به طور متعارف، طراحان به طور محافظه کارانه نیروی داخلی حاصل را برای طراحی تیر به تنهایی بدون در نظر گرفتن اثر دال در افزایش ظرفیت در نظر میگیرند). اما اگر سقف را به صورت شل تعریف کنید و مش بندی هم انجام دهید و بار گسترده سقف را با ابزار shell uniformاعمال نمایید، در این حالت بار ابتدا روی دال در نظر گرفته میشود و با استفاده از تحلیل الاستیک، عکس العمل صفحه محاسبه میشود و بار گسترده اعمالی به تیرهای پیرامونی دال بدست می آید البته در این حالت مثلا لنگر خمشی تیر بسیار کمتر از حالت قبل خواهد شد چون نیرو به نسبت سختی بین دال و تیر تقسیم میشود و دال نیز بخشی از لنگر خمشی را میگیرد. در این حالت طراحی مقطع تی شکل تیردال باید با زدن section cutبر تیر و خواندن برآیند لنگر تیر و دال صورت گیرد. نکته جالب آنکه اگر دال را به صورت شل مدل کنیم ولی بار گسترده آن را با ابزار shell uniform to frameاعمال نماییم، بار سقف بدون استفاده از تحلیل الاستیک با روش نیمسازها به تیرهای مجاور دال انتقال می یابد و عملا بار ابتدا به تیر میرسد اما چون دال سختی خمشی دارد، در این حالت نیز بعد از تحلیل، بخشی از نیروهای داخلی تیر به دال انتقال می یابد و باز هم از حالت اول کمتر خواهد شد، برای طراحی تیر در این حالت به صورت تی شکل، باید با زدن section cutبرآیند نیروی داخلی دال و تیر در نظر گرفته شود. نتایج این روش با روش اول به لحاظ نیروی طراحی تیر، تقریبا یکسان خواهد شد فقط با این تفاوت که سختی خمشی دال در حالت سوم در سختی جانبی سازه وارد میشود و از بار جانبی هم سهم میبرد و باید دال نیز در این حالت به عنوان یک عضو لرزه بر طراحی لرزه ای شود.
 
جالب است بدانید در نرم افزار ایتبس فقط یک گزینه برای اعمال بار بر روی دال وجود دارد و آن هم shell uniformاست اما با توجه به اینکه فرض کمپانی تولید کننده نرم افزار، در این است که مهندسینی که با ایتبس کار میکنند به این مبانی واقف نیستند، به طور پیش فرض، نرم افزار ایتبس وقتی دال به صورت membrane مدل میشود، بار سقف را با روش نیم سازها یا یکطرفه توزیع میکند و به طور پیش فرض هم مش بندی نمی کند و وقتی هم که به صورت شل مدل میشود، بار سقف را با تحلیل الاستیک به تیرهای مجاور منتقل میکند و   حالت سومی که در سپ وجود داشت در ایتبس وجود ندارد، برای آنکه در حالت مدلسازی سقف به صورت شل کل بار سقف به تیر منتقل شود و دال سهمی نبرد (مشابه ،)membraneبه سختی خمشی دال ( )m11,m22,m12باید یک ضریب کوچک اعمال شود، با این کار، انتقال بار از سقف به تیرهای مجاور از روش نیم سازها نبوده و از روش الاستیک است و بعد از انتقال بار به تیرها نیز به علت آنکه سختی دال ناچیز است، کل نیروی داخلی به خود تیر میرسد. در این حالت نیز باید نیروی داخلی بدست آمده را برای طراحی مقطع ترکیبی تی شکل (دال-تیر) در نظر گرفت اما به طور محافظه کارانه، طراحان کل نیروی حاصله را به تیر میدهند (به تنهایی.) در حالت اخیر دال هیچ مشارکتی در جذب نیروی جانبی و سختی جانبی سازه نداشته و نیاز به طراحی لرزه ای ندارد، این روش معمولاً در مدلسازی دالهای کنسول بدون تیر (در سه لبه) که امکان استفاده از روش
توزیع دو طرفه یا نیمسازها و تعریف دال با رفتار
membraneنیست (ناپایدار است)، استفاده میشود.
امیدوارم این مطالب که حاصل بررسی عمیق بنده در نرم افزارهای مختلف در قالب مدلهای ساده و پیچیده و منوال نرم افزار است، مورد توجه دوستان قرار بگیرد. هر چند این نوشتار خالی از اشکال نیست.
منابع :
-مرجع آنالیز نرمافزارهای
CSI

 
نویسنده: محمد طالبی

  • مهندس علیرضا خویه

دانلود pdf آموزش Etabs

مهندس علیرضا خویه | | ۰ نظر

آموزش تصویری برنامه ی تحلیلی
Etabs , Ver 7.4.
بهار 1397
دانشگاه قم
تهیه کنندگان: همکاری مهندسان زینب فروزنده و آقای محمدرضا غلامی
زیر نظر دکتر مهدی شریفی

 

 
فهرست:
1هدف......................................................................................................................................................3
2مقدمه
.....................................................................................................................................................3
3شرح مسئله
.......................................................................................................................................3
4مدلسازی ساختمان در برنامه:
..............................................................................................9
1-4نحوه ی باز نمودن و اجرای برنامه:
..................................................................................................................10
2-4تنظیم محورها و تراز ها:.............................................................................................................................12
3-4تعریف مشخصات مکانیک مصالح: ..................................................................................................................19
4-4تعریف مقاطع اعضای قابی شکل: ...................................................................................................................20
5-4تعریف مقطع المانهای صفحه ای:...................................................................................................................28
6-4ترسیم ستون ها: .....................................................................................................................................37
7-4تعریف ستون یا تیر ها در تراز میان طبقات:.........................................................................................................43
8-4ترسیم تیر ها:.........................................................................................................................................44
9-4ترسیم دالها و المان های صفحه ای:................................................................................................................46
10-4ترسیم دیوار برشی:...................................................................................................................................51
5اختصاص دادن: ........................................................................................................................ 53
1-5گیردار کردن تکیه گاه:
...............................................................................................................................54
2-5اختصاص دادن دیافراگم: ............................................................................................................................55
3-5اختصاص مقاطع......................................................................................................................................59
5-3-1اختصاص مقاطع ستون ها:.................................................................................. 59
5-3-2اختصاص دادن تیر ها: ........................................................................................... 61
5-3-3اختصاص دادن مقاطع المانهای صفحه ای:............................................. 62
4-5مش بندی ( تقسیم بندی دال و دیوار برشی )
......................................................................................................62
1-4-5مش بندی دال ..................................................................................................................... 62
2-4-5مش بندی دیوار برشی:
................................................................................................... 64
5-5نیروهای داخلی دیوارهای برشی.....................................................................................................................66
5-6ترسیم دیوارهای همبند (کوپله) و اختصاص برچسب های طراحی .................................................................................70
5-7اختصاص و مفصل کردن تیر یا ستون ..............................................................................................................

6بار گذاری: ...................................................................................................................................... 75
1-6مقدمه:
................................................................................................................................................75
2-6تعریف منابع بار.......................................................................................................................................75
3-6ترکیبات بار گذاری...................................................................................................................................79
1-3-6محاسبه بارهای ثقلی ......................................................................................................... 83
2-3-6بارهای زنده
............................................................................................................................ 85
4-6اختصاص دادن بار محاسبه شده یه المان های تیری شکل
........................................................................................86
6-4-1توضیح عمومی در خصوص نحوه ی اعمال بار به المانهای تیری شکل......................................................................... 86
2-4-6اختصاص بارگذاری دیوارها بر روی تیرها
...................................................... 91
6-4-3بارگذاری راه پله.......................................................................................................... 94
5-6اختصاص دادن بار محاسبه شده یه المان های صفحه ای (کف ها)
...............................................................................94
6-6تعریف جرم موثر زلزله ...............................................................................................................................97
7تحلیل سازه: .................................................................................................................................... 99
1-7مقدمه:
................................................................................................................................................99
2-7تنظیمات و انجام تحلیل:.............................................................................................................................99
3-7خروجی گرفتن از سازه.............................................................................................................................104
1-3-7بررسی نتایج تحلیل مودال.......................................................................................... 105
2-3-7خروجی تغییر مکان
......................................................................................................... 107
3-3-7نمایش نیروها (تلاش های داخلی:)
...................................................................... 108
8طراحی سازه
.............................................................................................................................. 122
1-8معرفی آیین نامه، انجام تحلیل و بررسی اولیه نتایج طراحی
......................................................................................122
2-8طراحی دیوار برشی.................................................................................................................................125
9افزودن تحلیل طیفی ............................................................................................................. 133

  • مهندس علیرضا خویه