مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۷۵ مطلب با موضوع «نظام مهندسی :: مباحث و آیین نامه ها» ثبت شده است

تشریح گزینه ی Mass Source

مهندس علیرضا خویه | | ۰ نظر

با استفاده از مسیر Define menu > Mass Source امکان دسترسی به گزینه‌های مختلف منبع جرم را خواهید داشت. این گزینه برای تعیین میزان جرم مورد نظر طراحی برای استفاده در تحلیل‌های استاتیکی و دینامیکی مورد استفاده قرار می‌گیرد. جرم مورد استفاده شده را می‌توان به شکل‌های مختلفی تعیین نمود. رایج‌ترین این روش‌ها استفاده از بارهای وارده بر سازه است که در تحلیل‌های متداول برای طراحی یک سازه استفاده می‌شود.
گزینه Element Self Mass: در صورت تیک خورد جرم المان‌های مدلسازی شده را در تعیین جرم سازه منظور می‌کند. توجه کنید تیک زدن این گزینه در حالتی که از مسیر Define menu > Load Patterns مقدار Self-Weight Multiplier را برای بار مرده عدد یک داده باشید و از روی بارهای وارده هم بخواهید جرم را تعیین کنید، درست نیست جرم المان‌های مدلسازی شده دوبار محاسبه می‌شود. برنامه از ضرب جرم مصالح اختصاص داده شده به مصالح المان‌ها در حجم آنها مقدار جرم آنها را محاسبه می‌کند.
گزینه Additional Mass: استفاده از این گزینه سبب در نظر گرفتن جرم‌های اضافی در منبع جرم می‌شود. شما می‌توانید به المان‌های نقطه‌ای، خطی و سطحی جرم اختصاص دهید (در بیشتر حالات به آنها وزن و بار از جنس kg یا ton اعمال می‌کنیم). این جرم‌ها معمولا در تحلیل‌های دینامیکی مورد استفاده قرار می‌گیرند و در طراحی سازه‌ها خیلی استفاده نمی‌شوند.
گزینه Specified Loads Patterns: پرکاربرد ترین گزینه این پنجره است و وقتی تیک آن زده می‌شود بارهای قائم رو به پایین به عنوان جرم در نظر گرفته شده و از تقسیم این بارهای بر g مقدار جرم بدست می‌آید. اگر باری رو به بالا اعمال شده باشد، مقدار آن در جرم صفر در نظر گرفته می‌شود. مثلا می‌توانید 100% بارهای مرده و 20% بارهای زنده را به عنوان منبع جرم سازه تعریف نمایید. در بخش Multiplier می‌توان ضریب هر نوع باری که قرار است به عنوان منبع جرم معرفی شود را وارد نمایید.
گزینه Adjust Diaphragm lateral Mass to Move Mass Centroid: با استفاده از این گزینه می‌توان مکان مرکز جرم را به صورت درصدی از بعد دیافراگم جابجا نمود.
گزینه Include Lateral Mass: در صورت تیک خوردن این گزینه جرم‌های انتقالی در جهت X و Y و جرم‌های دورانی حول محور Z در تحلیل مورد استفاده قرار می‌گیرند. معمولا این تیک بایستی زده شود.
گزینه Include Vertical Mass: در صورت تیک خوردن این گزینه جرم‌های انتقالی در جهت Z و دورانی حول محور X و Y در نظر گرفته شده و این گزینه معمولا نیازی به تیک خوردن ندارد مگر آنکه کاربر بخواهد تحلیل دینامیکی قائم انجام دهد.
گزینه Lump Lateral Mass at Story Levels: در صورت تیک خوردن این گزینه، جرم‌های بین تراز طبقات به نزدیک‌ترین تراز در بالا یا پایین منتقل می‌شوند.

 
منبع:@AlirezaeiChannel

  • مهندس علیرضا خویه

آنجه در پایین برای دانلود قرار داده شده است، یکی از کاملترین راهنماهای موجود در زمینه ی تشریح الزامات و ضوابط  طراحی سازه های فولادی می باشد که توسط شهرداری شیراز – بخش کنترل و نظارتساختمان تهیه شده است.

در این فایل علاوه بر عنوان مفاهیم مربوط به روش طراحی انواع سازه های فولادی به تشریح ضوابط و بندهای مربوط به مبحث دهم مقررات ملی ساختمان نیز پرداخته شده است.

**پیشنهاد ویژه ی دانلود

 

  • نکات ویژه در طراحی سازه های فولادی با Etabs
    •  Steel Structure Etabs [ Etabs-SAP.ir ].zip
  •  6.18 مگابایت
  • تعداد صفحات : 33

 

- روش طراحی سازه های فولادی
- الزامات بارگذاری  در سازه های فولادی
- الزامات تحلیل  ساختمان فولادی
- الزامات عمومی مقاطع فولادی
- الزامات عمومی ستون ها و کف ستون ها
- کنترل ضوابط شکل پذیری سازه های فولادی
- الزامات تکمیلی شکل پذیری قاب مهاربندی همگرای معمولی
- الزامات تکمیلی شکل پذیری قاب مهاربندی همگرای ویژه
- الزامات تکمیلی شکل پذیری قاب خمشی متوسط
- الزامات تکمیلی شکل پذیری قاب خمشی ویژه

  • مهندس علیرضا خویه

در صورت وجود فشار جانبی خاک، فشار زیرزمینی و یا مواد انباشته شده، H، اثر آنها را باید بصورت زیر منظور نمود. اگر اثر این بارها در جهت افزودن به اثرات دیگر متغییرهای اصلی بارگذاری باشد، اثر بار H باید با ضریب 1.6 در ترکیب بارها منظور گردد.
1. 1.4D + 1.6H
2. 1.2D + 1.6L + 0.5(Lr or S or R) + 1.6H
3. 1.2D + 1.6(Lr or S or R) + (L or 0.5(1.4W)) + 1.6H
4. 1.2D + 1.0(1.4W) + L + 0.5(Lr or S or R) + 1.6H
5. 1.2D + 1.0E + L + 0.2S + 1.6H
6. 0.9D + 1.0(1.4W) + 1.6H
7. 0.9D + 1.0E + 1.6H
8. 1.2D + 0.5L + 0.5(Lr or S) + 1.2T + 1.6H
9. 1.2D + 1.6L + 1.6(Lr or S) + 1.0T + 1.6H
 
اگر اثر این بارها در جهت کاهش به اثرات دیگر متغییرهای اصلی بارگذاری باشد، اثر بار H باید با ضریب 0.9در ترکیب بارها منظور گردد.
1. 1.4D + 0.9H
2. 1.2D + 1.6L + 0.5(Lr or S or R) + 0.9H
3. 1.2D + 1.6(Lr or S or R) + (L or 0.5(1.4W)) + 0.9H
4. 1.2D + 1.0(1.4W) + L + 0.5(Lr or S or R) + 0.9H
5. 1.2D + 1.0E + L + 0.2S + 0.9H
6. 0.9D + 1.0(1.4W) + 0.9H
7. 0.9D + 1.0E + 0.9H
8. 1.2D + 0.5L + 0.5(Lr or S) + 1.2T + 0.9H
9. 1.2D + 1.6L + 1.6(Lr or S) + 1.0T + 0.9H
@AlirezaeiChannel

  • مهندس علیرضا خویه

در طراحی لرزهای، اهمیت حداکثر تنش تسلیم احتمالی (تنش تسلیمی که در واقعیت رخ می‌دهد) با حداقل تنش تسلیم (تنش تسلیمی که در تئوری در نظر گرفته می‌شود) برابر است. مطالعات اخیر نشان میدهد که حاشیهای بین مقاومت تسلیم میانگین واقعی و مقاومت تسلیم مشخصه وجود دارد. برای مثال در چند دهه گذشته برای فولاد ASTM-36 مقاومت های تسلیمی از 270 مگاپاسکال تا 225 مگاپاسکال گزارش دادهاند. این مقاومت افزون، در برخی از المانهای لرزهای، بخصوص المانهایی که به صورت فیوز عمل میکنند بایستی به دقت بررسی شود. زیرا که برای جذب انرژی در این المانها، میزان تنش تسلیم بایستی به صورت معینی تعیین شود تا زودتر از بقیه قسمتهای سازه وارد حوزه خمیری شوند.
کاربرد اصلی Ry در طرح لرزه‌ای، در طراحی اعضایی است بایستی برای ظرفیت فیوزهای سازه‌ای طراحی شوند. مثلا اگر بخواهیم یک اتصال مهاربند همگرا را طراحی کنیم، نیروی طراحی برابر حداکثر ظرفیت مورد انتظار مهاربند در کشش است که برابر RyFyAg می‌شود. ضریب Ry برای مورد انتظار نمودن تنش تسلیم است. یعنی اگر در طراحی Fy=240 MPa در نظر گرفته شود و در عمل مقدار Fy بیشتر از 240 MPa شود و نیروی بیشتری به اتصال آن در حین جاری شدن وارد شد، آن اتصال قوی تر از خود مهاربند طراحی شده باشد. برای این منظور بایستی در طراحی اتصال، از تنش تسلیم محتمل یعنی Ry برابر Fy استفاده شود. این اضافه مقاومت به سبب افزودنی‌هایی مانند آهن قراضه و همچنین پروسه تولید و نوردکاری ایجاد می‌شود. آیین نامه های طراحی ضریبی را با عنوان Ry که برای هر مقطعی متفاوت است در نظر میگیرند. بایستی مقاومت مورد انتظار اجزای کنترل شونده توسط جابجایی را در طراحی اعضای کنترل شوند توسط نیرو بکار برد. طبق آیین‌نامه AISC تنش تسلیم و تنش نهایی مورد انتظار با ضرب Ry و Rt به ترتیب در تنش تسلیم حداقل و تنش نهایی حاصل می‌شود.
Expected Yield Strength = Ry Fy
Expected Tensile Strength= Rt Fu
همچنین #مبحث_دهم مقداری را برای Rt ارائه نمی‌دهد.
در ETABS 9.7.4 امکان تعریف این پارامتر در مصالح وجود ندارد ولی می‌توانید با انتخاب اعضا، این ضریب را به آنها اختصاص دهید. بشرطی که آیین‌نامه AISC360-05 را انتخاب کرده باشید، با انتخاب مقطع مورد نظر و استفاده از مسیر Design menu > Steel Frame Design > View/Revise Overwrites میتوانید از بخش Overstregth factor, Ry مقدار ضریب Ry را وارد نمایید تا به آن مقطع اختصاص یابد.
@AlirezaeiChannel

  • مهندس علیرضا خویه

شرحی بر بند 3-10 آیین نامه 2800

مهندس علیرضا خویه | | ۰ نظر

شرحی بر بند 3-10 آیین نامه 2800
برای سازه های بتنی:
بر طبق ACI 318-14 :
18.14—Members not designated as part of the seismic-force-resisting system
ضوابط اعضایی که به عنوان بخشی از سیستم باربر جانبی طراحی نمیشوند.
18.14.1 Scope
18.14.1.1 This section shall apply to members not designated as part of the seismic-force-resisting system in structures assigned to SDC D, E, and F.
ضوابط این بخش باید به اعضایی که به عنوان بخشی از سیستم باربر جانبی نیستند در سازه های قرار گرفته در منطقه لرزه خیزی D ،E و F اعمال شود.
 
18.14.2 Design actions
18.14.2.1 Members not designated as part of the seismic force-resisting system shall be evaluated for gravity load combinations of (1.2D + 1.0L + 0.2S) or 0.9D, whichever is critical, acting simultaneously with the design displacement δu. The load factor on the live load, L, shall be permitted to be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where L is greater than 100 lb/ft2.
اعضایی که به عنوان بخشی از سیستم باربر جانبی طراحی نمی شوند، باید برای ترکیب بارهای ثقلی (1.2D + 1.0L + 0.2S) یا 0.9D هرکدام که بحرانی تر است به طور همزمان با اعمال تغییر مکان طراحی δu ، ارزیابی شوند. ضریب بار زنده L مجاز است به عدد 0.5 کاهش پیدا کند به جز در پارکینگ ها ، مکان های عمومی که امکان اجتماع افراد در آن وجود دارد و همه مواردی که بار زنده آن ها بیشتر از 100 lb/ft2 است.
 
18.14.3 Cast-in-place beams, columns, and joints
18.14.3.1 Cast-in-place beams and columns shall be detailed in accordance with 18.14.3.2 or 18.14.3.3 depending on the magnitude of moments and shears induced in those members when subjected to the design displacement δu. If effects of δu are not explicitly checked, the provisions of 18.14.3.3 shall be satisfied.
ستون ها و تیرهای در جا بتن ریزی شده بسته به بزرگای لنگرها و برش های ایجاد شده در آن ها زمانی که تحت تغییر مکان δu قرار میگیرند ، باید دارای جزئیات بخش های 18.14.3.2 یا 18.14.3.3 باشند.
اگر اثرات δu صریحا بررسی نشود الزامات بخش 18.14.3.3 باید رعایت شود.
(یعنی مشخصه که دو راه حل وجود داره یا الزامات 18.14.3.3 رو بدون هیچ بررسی ای باید رعایت کرد،
یا الزامات 18.14.3.2 یا 18.14.3.3را بر حسب بزرگای لنگرها و برش های ایجاد شده در آن ها، زمانی که تحت تغییر مکان δu قرار میگیرند ، باید رعایت کرد.)
 
18.14.3.2 Where the induced moments and shears do not exceed the design moment and shear strength of the frame member, (a) through (c) shall be satisfied:
زمانی که لنگر ها و برش ها (حاصله از قرار گرفتن تحت تغییر مکان δu ) از مقاومت خمشی و برشی اعضای قاب بیشتر نشود، ضوابط a تا c باید رعایت شوند:
(a) Beams shall satisfy 18.6.3.1. Transverse reinforcement shall be provided throughout the length of the beam at spacing not to exceed d/2. Where factored axial force exceeds Ag fc′/10, transverse reinforcement shall be hoops satisfying 18.7.5.2 at spacing so, according to 18.14.3.2(b).
تیرها باید الزامات بخش 18.6.3.1 را رعایت کنند. آرماتورهای برشی باید در سرتاسر تیر با حداکثر فاصله d/2 رعایت شود.
در جایی که نیروی محوری بیشتر از Ag fc′/10 باشد، آرماتورهای برشی باید طبق ضوابط بخش18.7.5.2 در فاصله های so بر طبق بخش 18.14.3.2(b) قلاب شوند.
 
(b) Columns shall satisfy 18.7.4.1, 18.7.5.2, and 18.7.6. The maximum longitudinal spacing of hoops shall be so for the full column length. Spacing so shall not exceed the lesser of six diameters of the smallest longitudinal bar enclosed and 6 in.
ستون ها باید الزامات بخش های 18.7.4.1 و 18.7.5.2 و 18.7.6 را رعایت کنند. ماکزیمم فاصله قلاب ها در کل طول ستون باید so باشد. فاصله so باید بیشتر از حداقل دو مقدار، 6 برابر قطر کوچکترین آرماتور طولی محصور شده و 6 اینچ باشد.
 
(c) Columns with factored gravity axial forces exceeding 0.35Po shall satisfy 18.14.3.2(b) and 18.7.5.7. The amount of transverse reinforcement provided shall be one-half of that required by 18.7.5.4 and spacing shall not exceed so for the full column length.
ستون ها با نیروی محوری ضریب دار بیشتر از 0.35Po باید الزامات بخش 18.14.3.2(b) و 18.7.5.7. را رعایت کنند. مقدار آرماتور برشی باید به مقدار نصف الزام بخش 18.7.5.4 باشد و فاصله ها نباید بیشتر از so در کل طول ستون باشد.
 
18.14.3.3 Where the induced moments or shears exceed ϕMn or ϕVn of the frame member, or if induced moments or shears are not calculated, (a) through (d) shall be satisfied:
در جایی که لنگر ها یا برش (حاصله از قرار گرفتن تحت تغییر مکان δu ) بیشتر از مقاومت خمشی و برشی طراحی اعضا باشد ، یا اگر لنگر ها یا برش ها محاسبه نشوند باید الزامات بخش های زیر از a تا d رعایت شوند:
 
(a) Materials, mechanical splices, and welded splices shall satisfy the requirements for special moment frames in 18.2.5 through 18.2.8.
مصالح ، وصله مکانیکی و وصله جوشی باید الزامات قاب خمشی بتنی ویژه آمده در بخش 18.2.5 تا 18.2.8 را رعایت کنند.
(b) Beams shall satisfy 18.14.3.2(a) and 18.6.5.
تیرها باید الزامات بخش های 18.14.3.2(a) و18.6.5. را رعایت کنند.
(c) Columns shall satisfy 18.7.4, 18.7.5, and 18.7.6.
ستون ها باید الزامات بخش های 18.7.4 ، 18.7.5 و 18.7.6 را رعایت کنند.
(d) Joints shall satisfy 18.8.3.1.
اتصالات باید الزامات بخش 18.8.3.1 را رعایت کنند.
من خودم به شخصه در طراحی سازه های بتنی با سقف وافل ستون هایی که جزء سیستم باربر جانبی نیستند رو با ضوابط ستون های قاب خمشی ویژه خاموت گذاری میکنم که راه حل ساده تری هست
 
منبع: کانال محاسبات سازه - مهندس رضا براتی

  • مهندس علیرضا خویه

بار زنده در ETABS

مهندس علیرضا خویه | | ۰ نظر

حداقل بار زنده پارکینگ 300kg/m2
Live (L)

✅حداقل بار زنده بام 150kg/m2 (در محاسبه جرم لرزه ای مشارکت ندارد)
Roof Live(Lr)

✅حداقل بار زنده فضا های عمومی ،لابی ها ،همکف ، اتاق پله و  عموما فضاهایی که بالای ۲۰نفر تردد دارند 500kg/m2می باشد (در کف این کاربری ها نیاز به اعمال معادل سربار زنده ناشی از پارتیشن ها نمی باشد،هرچند مساحت آنها در محاسبه سربار لحاظ می گردد. )
Reducible Live (RL1)

✅حداقل بار زنده فضاها و اتاق های خصوصی (انتخاب  کاربری فضای مورد بررسی به قضاوت مهندسی نیز بستگی دارد)200kg/m2  می باشد ،(این بار با ضریب 0.5 در ترکیبات بار لرزه ای شرکت خواهد داشت .)
Reducible Live (RL2)

✅نحو ه  و میزان اعمال بار پارتیشن ها بستگی به دتایل آنها دارد ، به این صورت که اگر وزن هر متر مربع  دتایل انها بیشتر از 2کیلو نیوتون بر متر مربع شود ؛ بار پارتشین  از نوع حالت بار مرده تعریف شده و باید در محل واقعی خود دیوار(با تعریف یک تیر در نرم افزار)  بر روی کف اعمال گردد . اما در صورتی که وزن دتایل انها کمتر از 2کیلو نیوتن بر متر مربع باشد باید معادل سر بار انها را حساب کرد که این معادل نیز دارای حداقل هایی  به شرح زیر می باشد : 

1-برای تیغه هایی که وزن هر متر مربع انها حداکثر 40kg  می باشد ،این حداقل 50kg/m2 می باشد .
2- برای تیغه هایی که وزن هر متر مربع انها بزرگتر از 40kg می باشد ، حداقل بار گستره معادل سربار زنده 100kg/m2 می باشد .
Live (LP) OR Dead (D)

✅در مورد تراز بام و بار برف  که از بارهای محیطی می باشد ، باید هم بار زنده بام و هم بار برف را  در نرم افزاز تعریف و در تراز بام اعمال کنیم ،فقط باید به این نکته توجه کرد که بار برف در تعریف جرم لرزه ای شرکت دارد،اما برای تعریف ترکیب بارها طراحی ، باید بزرگترین این بارها را لحاظ کرد .

  • مهندس علیرضا خویه

  • مهندس علیرضا خویه

 

 

 

 

  • مهندس علیرضا خویه

 ضریب اضافه مقاومت ( امگا صفر ) که در جدول ضریب رفتار آئین نامه 2800 ویرایش چهارم آمده است به چه منظوری است و در کجا مورد استفاده قرار میگیرد؟؟؟

تجربه نشان داده که کلیه سازه‌ها در برابر بارهای وارده مقاومتی بیشتر از مقاومت طراحی از خود نشان می‌دهند. دلیل این امر وجود ذخیره مقاومتی قابل توجهی است که در طراحی سازه‌ها لحاظ نشده است، این مقاومت ذخیره به نام مقاومت افزون شناخته میشود و به عنوان یکی از عوامل موثر بر ضریب رفتار، بر ایمنی و اقتصاد طراحی تاثیر گذاشته است. عامل باز توزیع نیروهای داخلی را می‌توان برای کاهش نیروهای طراحی مورد استفاده قرار داد. طبق اکثر آیین‌نامه‌های مدرن طراحی سازه‌های فولادی، مقدار مقاومت #افزون برای #سیستم‌های مهاربندی (طبق مبحث دهم) برابر 2 می‌باشد (به جدول 10-3-2 مبحث دهم مراجعه نمایید). طبق فلسفه طراحی #لرزه‌ای سازه‌ها، #فیوزهای یک سازه (مکان‌هایی که قرار است جاری شده و انرژی ورودی زلزله را مستهلک کنند) بایستی ضعیف‌ترین جزء قاب باشند تا بتوانند وظیفه خود را بخوبی انجام دهند. لیکن به دلایل فراوان تمایلی به ایجاد مفصل خمیری در ستون‌ها، اتصالات و برخی نقاط دیگر سازه وجود نداریم. برای در امان ماندن ستون‌ها از جاری شدن (در صورت ایجاد مفصل خمیری در ستون‌ها به سبب نیروی محوری زیادی که دارند احتمال ناپایداری سازه و شکست ترد وجود دارد) بایستی ستون‌ها قوی‌تر از بقیه اجزا طراحی شوند. بدین منظور #آیین‌نامه‌ها بجای طراحی ستون‌ها در سطح نیروی Cs یا Cw، (نیروی تجویز شده از طرف #آیین‌نامه) آنها را برای سطح نیروی Cy طراحی می‌نمایند. بطور کلی این ضریب در نیروی زلزله طراحی اجزایی که می‌خواهیم جاری نشوند یا در آخرین مرحله جاری شوند، بکار می‌رود.

 



برخی از اساتید و مهندسان ضریب اومگا و یا نامعینی را در ضریب زلزله ضرب میکنند این عمل درست هست ویا در loade case هم ضرب میکنند من این کارو انجام دادم برش پایه به اندازه ضریبی که اعمال کردم افزایش یافت و با توجه به اینکه اعمال ضریب نامعینی و اومگا در نرم افزار در قسمت طراحی می باشد یعنی وقتی ما در قسمت تنظیمات ایین نامه ضریب اومگا و نامعینی را اعمال میکنیم در برش پایه و نتایج تحلیل تغییری ایجاد نمیشه ودر طراحی تغییراتی ایجاد میشه این سوال برام پیش اومد که ما فقط میتونیم در ترکیبات بار اعمال کنیم این ضرایب را نه در ضریب زلزله و loade case کنیم یعنی خود نرم افزار در قسمت طراحی این ضررایب را تنظیم میکند نه در تحلیل این درست هست یا نه ؟ و توضیح کاملی در مورد این مطلب بفرمایید خیلی ممنون

 

درستش اینه که در ترکیب بارها ضرب کنید. اعمال این ضریب ها در ضریب زلزله باعث ایجاد محافظه کاری در طراحی میشود. مثلا اثرات ناشی از P-Delta که نیازی نیست در ضریب Rho ضرب شود و یا در کنترل جابجایی سازه، نیازی به اعمال ضریب نامعینی نیست.


 

-باتوجه به پستهای قبلی مبنی برهشداردر مورد استفاده از اومگا0 و ازبین رفتن ضرایب 0.3 شماکدام روش رو بعنوان بهترین روش اعمال اوگا0 پیشنهادمیدهید؟ایا Exall+0.3E بعنوان یک load case  ساخته شود که اومگا در این مجموع ضرب شود؟یا اینکه ترکیب بارهایی بر اساس اومگاساخته شود؟یااینکه اومگا در ضرایب c زلزله ضرب شود؟درصورتیکه در دوجهت سازه دارای دو سیستم مختلف با دو نوع اومگا0 بودیم بهترین روش کدام است؟

- توصیه نمیکنم ضریب امگا در c ضرب شود. میتوانید از حالت تحلیل Exall+0.3E استفاده کنید یا اینکه ضریب امگا را در ترکیب بارها دستی وارد کنید و خودتان ستون ها را چک کنید.

 

منبع: کانال دکتر علیرضایی

  • مهندس علیرضا خویه

اگه بخواهم ترکیب بار های خود آیین نامه بتنی انتخاب شده را استفاده بکنم و به شکل دستی ترکیب بار ها را ننویسم چه کار باید بکنم

 

در مورد ترکیب بارهای ساخته شده بصورت پیش فرض برنامه به چند نکته باید توجه داشت:
1- این ترکیب بارها شامل اثرات متعامد نیروی زلزله نمیشوند، مگر آنکه شما حالت بار طیفی تعریف نموده باشید و در بخش Loads Applied هر دو بار طیفی در جهت X و Y را اعمال نموده باشید و در بخش Directional Combination Type یکی از گزینه های SRSS یا Absolute را انتخاب نموده باشید. در حالتی که Absolute انتخاب شده باشد، بایستی در بخش ABS Scale Factor عدد 0.3 را وارد نمایید. پس بنابراین اگر بخواهید در ترکیب بارهای استاتیکی اثر زلزله متعامد زلزله را اعمال کنید، حتما باید این ترکیب بارها را ساخته و استفاده نمایید.
2- ترکیب بارهای پیش فرض برنامه فقط برای حالات بارهای استاتیکی و دینامیکی طیفی ساخته میشود و برای سایر تحلیل ها (مثل تاریخچه زمانی) باید توسط کاربر ساخته شود.
3- به آیین نامه استفاده شده دقت کنید. برخی آیین نامه های قدیمی مثل AISC89-ASD فرض میکنند که ضریب رفتار استفاده شده براساس تنش مجاز داده شده است. در آیین نامه های بتنی نیز ACI318-99 نیز به این صورت است و برای طراحی سازه های بتنی نیروی زلزله در ترکیب بارهای پیش فرض ضریبدار است. اگر از ویرایش چهارم 2800 استفاده مینمایید نباید نیروی زلزله ضریب داشته باشد (برای طراحی به روش حالات حدی یا مقاومت نهایی).

 

@AlirezaeiChannel

 

  • مهندس علیرضا خویه