مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۴۶ مطلب در مهر ۱۳۹۶ ثبت شده است

مفاهیم تحلیل طیفی

مهندس علیرضا خویه | | ۰ نظر

- می دانیم یک سازه چند درجه آزاد دارای فرکانس های ارتعاشی متفاوتی است که کمترین آن مربوط به مود اول و بیشترین آن مربوط به مود آخر است . از طرفی زلزله های مختلف نیز دارای محتوای فرکانسی متفاوتی هستند. از دینامیک سازه‏ها می دانیم که اگر فرکانس بارگذاری که به یک سیستم اعمال می شود، نزدیک به فرکانس طبیعی آن سیستم باشد، در آن سیستم حالت تشدید رخ می‏دهد . با توجه به همین واقعیت، اگر محتوای فرکانسی غالب یک زلزله نیز، نزدیک به یکی از فرکانس‏های ارتعاشی سازه مورد نظر باشد‏، باید در آن مود خاص ، تشدید رخ دهد. اثر مشارکت جرمی در مودها در یک سازه به منظمی آن بستگی دارد. هرچه سازه منظم‌تر باشد، درصد مشارکت مود اول بالاتر خواهد بود.
چرا هیچوقت در یک مد ۱۰۰% اثر مشارکت جرمی نداریم ؟
- اینکه چرا هیچوقت در یک مد ۱۰۰% اثر مشارکت جرمی نداریم، باید به اصول تحلیل مودال برگردیم. دو رهیافت کلی برای تحلیل لرزه‌ای سازه‌های چند درجه آزاد وجود دارد. در رهیافت اول، می‌توان پاسخ هر درجه‌ی آزادی را در هر لحظه‌ی زمانی از وقوع زلزله محاسبه نمود و در نهایت تاریخچه‌ی زمانی پاسخ را محاسبه و ترسیم نمود، این روش تحلیل، اصطلاحاً «روش تحلیل تاریخچه‌ی زمانی پاسخ» نام دارد. پاسخ می‌تواند جابجایی، سرعت و یا شتاب باشد. در رهیافت دوم که «روش تحلیل طیف پاسخ» یا «روش تحلیل طیفی» نام دارد، حداکثر پاسخ محتمل سازه بدون داشتن اطلاعات تاریخچه‌ی زمانی تخمین زده می‌شود. یعنی مهندس محاسب بدون اطلاع از کل تاریخچه‌ی زمانی پاسخ، حداکثر پاسخ محتمل را ـ که در طراحی بسیار با اهمیت است ـ به دست می‌آورد. حداکثر پاسخ از آن جهت اهمیت دارد که با داشتن آن می‌تواند بدترین شرایط سازه را بررسی نمود و سازه را برای مقاومت در برار آن طراحی نمود. در عمل، معمولاً مهندسان روش دوم را ترجیح می‌دهند. زیرا در تحلیل تاریخچه‌ی زمانی حجم بسیار زیادی از داده‌ها تولید می‌شود. این داده‌ها پاسخهای مختلف برای کلیه‌ی درجات آزادی سازه است که بررسی آن دشوار و زمان‌بر است. در این روش یک سازه nدرجه آزاد به nتا سیستم یکدرجه آزاد تبدیل میشود. یعنی اینکه ارتعاش پیچیده (چیزی در واقعیت رخ می‌دهد) را میتوان به n تا ارتعاش ساده تبدیل کرد. بنابراین اگر سازه شما یک درجه آزادی داشته باشد، 100% مشارکت جرمی آن سهم آن یک مود ارتعاشی آن است.
- اصولاً معیاری از نظر آیین‌نامه برای درصد قابل قبول جهت مشارکت جرمی در آن مود وجود ندارد و ملاک میزان درصد تجمی جرمی است.
علت اینکه در ۳ مد اول و یا حتی در مد اول ما مشارکت جرمی کمی داریم (درصد مشارکت مثلا زیر ۱۰% برای هر راستا) چه هست ؟ (در مدهای بالاتر اثر مشارکت شکوفا میشود)
- اگر درصد مشارکت جرمی در مود اول پایین باشه، نشان دهنده نامنظمی سازه و اثر قابل ملاحظه در مودهای بالا است. این نامنظمی میتواند در جرم یا در سختی باشد. یعنی در این حالت سازه شما نامنظم بوده که این اتفاق افتاده.
- ملاک همان مجموع 90% است. لزوماً غلط مدل نشده است. البته اگر سازه شما منظم باشد و این اتفاق ایجاد شود باید حساس شوید و مدل را بازبینی کنید.
-اگر در مود اول درصد مشارکت جرمی 40% باشد، بقیه جرم سازه در مودهای دیگر نهفته است. اشکال مودی و فرکانس‌های متناظر آن‌ها (یا زمان‌های تناوب متناظر)، جزو مشخصات بسیار مهم هر سازه‌ی چنددرجه آزاد است که در تعیین پاسخ‌ آن‌ها تحت اثر شرایط ارتعاش اجباری، از جمله تحریک پایه‌ی زلزله، نقش بسیار اساسی ایفا می‌کند. اشکال مودی و فرکانس‌های آن‌ها با روش‌های ریاضی قابل محاسبه است.
برای دیدن جزئیات بیشتر در ارتباط با این سوال پیشنهاد میکنم این مقاله را مطالعه نمایید:
* حسینی، محمود؛ یعقوبی وایقان، فریبرز. "نگاهی دقیق تر به مفهوم ضریب مشارکت جرمی و تعاریف آن در تحلیل لرزه ای سازه ها"، پژوهشنامه پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله، شماره 3، پاییز 1378
 
منبع: کانال دکتر علیرضایی

  • مهندس علیرضا خویه
برنامه ETABS قادر به طراحی دیوار حائل نیست. برنامه تنها قادر به طراحی دیوارهای برشی بتنی برای نیروهای داخل صفحه است. دیوار حائل دارای عملکرد عمده خارج از صفحه است. بدین معنی که از دیوار حائل اصولاً جهت مقابله با بارهای جانبی خاک استفاده میشود. بهرحال شما برای طراحی آن میتوانید از طرح دستی استفاده کنید و یا آنکه از برنامه SAFE جهت تحلیل و طراحی آن استفاده کنید. با توجه به اینکه در اغلب سازه‌ها، دیوار حائل بصورت سرتاسری و دورتادور سازه اجرا میشود، سهمیه نیروی زلزله (تنش‌های ناشی از نیروی جانبی در آن) بسیار ناچیز است (مگر آنکه طول دیوارهای حائل خیلی کم باشد) و نیروی زلزله در اغلب موارد حاکم نیست. البته این مورد در ارتباط با دیوارهای حائل که سقف مهار هستند صادق است و در مواردی که دیوار حائل از بالا آزاد باشد، ممکن است نیرو زلزله آن زیاد باشد. اگر مراد طراحی دیوار برای بارهای داخل و خارج از صفحه باشد، بایستی از برنامه SAFE جهت طراحی آن برای بارهای خارج از صفحه و از برنامه ETABS برای طراحی داخل صفحه آن استفاده شود. البته در اینجا اندرکنش این نیروها دیده نمیشود.
  • مهندس علیرضا خویه

اتصال اتکایی پیچ

مهندس علیرضا خویه | | ۰ نظر

منظور از اتصال اتکایی پیچ
در عملکرد اتکایی، پیچ درون سوراخ صفحات اتصال قرار می‌گیرد و مهره بسته می‌شود. هنگامی که بار خارجی به پیچ وارد می‌شود، قطعات اتصال لغزش پیدا می‌کنند که در اثر آن، یک نیروی فشاری به لبه‌های اتصال وارد می‌شود که تبدیل به نیروی برشی در پیچ میشود. این اتصال تنها برای حالت بارگذاری ثقلی است و در طرح لرزه‌ای نباید از این نوع عملکرد در اتصال استفاده نمود. در این نوع اتصال هیچ نیروی پیش تنیدگی در پیچ ایجاد نمی‌شود و برای اجرای این اتصال، تنها سفت کردن پیچ به وسیله‌ی کارگر کفایت می‌کند.

  • مهندس علیرضا خویه

فرمول فواصل خاموت ها

مهندس علیرضا خویه | | ۰ نظر

جزئیات داده در بند 9-15-3 ضوابط غیرلرزه‌ای و ضوابط بند 9-23-3-1-2-5 ضوابط لرزه‌ای است. در عضوی که برای بارهای زلزله بایستی طراحی شود، بدترین این دو بند بایستی ملاک قرار گیرد. در بیشتر حالات محدودیت‌های ضوابط لرزه‌ای حاکم هستند.
 

  • مهندس علیرضا خویه

طول گیرایی میلگردهای کششی طبق رابطه 9-21-1 از مبحث نهم تعیین می‌شود. این رابطه می‌تواند کاربردهای زیادی داشته باشد. مهمترین کاربرد آن تعیین طول وصله میلگردها کششی است که طبق بند 9-21-4-2-1 در وصله‌های پوششی، طول پوشش باید حداقل 1.3Ld باشد. خلاصه روابط طول مهاری میلگردها در شکل زیر نشان داده شده است.
 
[caption id="attachment_3819" align="alignnone" width="1280"] طول گیرداری و وصله ی میلگرد
روابط و فرمول های طول وصله میگرد و طول گیرداری میلگرد، طول خم میلگرد[/caption]

  • مهندس علیرضا خویه

نیروی قائم زلزله

مهندس علیرضا خویه | | ۰ نظر

در بند 3-3-9 استاندارد 2800، به نیروی قائم زلزله پرداخته شده است:
الف) کل ساختمان‌هایی که در پهنه با خطر نسبی خیلی زیاد واقع شده‌اند.
ب) تیرهای بیش از 15 متر
پ) تیرهایی که بار قائم متمرکز قابل توجهی دارند.
ت) بالکن‌ها
در 2800 تفکیکی صورت نگرفته که اگر سازه‌ای شامل حالت الف می‌شود، آیا حالت (ب) تا (ت) نیز شامل آن می‌شود یا خیر. لیکن به نظر شخصی اینجانب نیازی نیست و اعمال دو بار، نیروی زلزله به یک عضو بی‌مورد است. بنظرم بند‌های (ب) تا (ت) حساسیت بی مورد 2800 در مورد بار قائم است که به نوعی می‌خواسته روش سنتی اعمال بار قائم زلزله از ویرایش قبلی حفظ شود. آیین‌نامه ASCE7-10 خیلی راحت‌تر بار قائم را در نظر می‌گیرد:
12.4.2.2 Vertical Seismic Load Effect
The vertical seismic load effect, Ev, shall be determined in accordance with Eq. 12.4-4 as follows:
Ev = 0.2*SDS*D
SDS = design spectral response acceleration parameter at short periods obtained from Section 11.4.4
D = effect of dead load
در واقع ASCE7-10 تنها بند (الف) 2800 را پوشش می‌دهد.
منبع: کانال دکتر علیرضایی

  • مهندس علیرضا خویه

ضوابط شکل پذیری متوسط

مهندس علیرضا خویه | | ۰ نظر

ضوابط سازه های با شکل پذیری متوسط:
اعضای تحت خمش در قاب ها:
خاموت گذاری در تیر ها:
اگر فاصله دو میلگرد طولی بیشتر از ۱۵۰ میلیمتر باشد , باید توسط خاموت به هم متصل شوند.
طول قسمت های بحرانی در تیرها:
دو برابر ارتفاع مقطع
فاصله خاموت ها در ناحیه ویژه:
کمترین مقادیر زیر:
d/4
۸ برابر قطر آرماتور طولی
۲۴ برابر قطر خاموت
۳۰۰ میلیمتر
فاصله خاموت ها در سایر قسمت های تیر:
d/2
اعضای تحت فشار و خمش در قاب ها:
خاموت گذاری در ستون ها:
طول ناحیه بحرانی در ستون ها:
بیشترین مقادیر زیر:
L/6
بعد بزرگتر ستون
۴۵۰ میلیمتر
فاصله خاموت ها در ناحیه بحرانی:
کمترین مقادیر زیر:
نصف کوچکترین بعد مقطع
۸ برابر قطر آرماتور طولی
۲۴ برابر قطر خاموت
۲۵۰ میلیمتر
فاصله اولین خاموت، نصف مقدار بالا است.
در محل اتصال ستون به شالوده باید در طول حداقل ۳۰۰ mm در داخل پی ، با آرماتور های عرضی (با فاصله خاموت ها در ناحیه بحرانی) تقویت گردد.
ضوابط سازه های با شکل پذیری زیاد:
اعضای تحت خمش در قاب ها :
خاموت گذاری در تیر ها:
فاصله آرماتور های عرضی دربرگیرنده وصله:
کمترین مقادیر زیر:
d/4
۱۰۰ mm
طول قسمت های بحرانی در تیرها:
دو برابر ارتفاع مقطع
فاصله خاموت ها در ناحیه ویژه:
کمترین مقادیر زیر:
d/4
۸ برابر قطر کوچکترین میلگرد طولی
۲۴ برابر قطر خاموت
۳۰۰ میلیمتر
فاصله خاموت ها در سایر قسمت های تیر:
d/2
اعضای تحت فشار و خمش در قاب ها:
خاموت گذاری در ستون ها:
طول ناحیه بحرانی در ستون ها:
بیشترین مقادیر زیر:
L/6
بعد بزرگتر ستون
۴۵۰ میلیمتر
فاصله خاموت ها در ناحیه بحرانی:
کمترین مقادیر زیر:
¼ کوچکترین بعد ستون
۸ برابر قطر کوچکترین میلگرد طولی
۱۲۵ میلیمتر
فاصله خاموت ها در سایر قسمت های ستون:
کمترین مقادیر زیر:
½ کوچکترین بعد ستون
۶ برابر قطر کوچکترین میلگرد طولی
۲۰۰ میلیمتر

  • مهندس علیرضا خویه

کنترل های طراحی در Etabs

مهندس علیرضا خویه | | ۰ نظر

به هیچ عنوان نمی‌توان کنترل‌هایی را بصورت خاص برای تمام پروژه‌ها بیان نمود ولیکن بصورت کلی می‌توان به مواردی که می‌توان در ETABS آنها را کنترل‌نمود، به شکل زیر اشاره کرد. برخی از این موارد ممکن است، در برخی پروژه‌ها کاربردی نداشته باشد و یا در برخی پروژه‌ها نیاز به کنترل‌های خاص‌تری باشد.
1- بررسی نامنظمی پیچشی زیاد و شدید، نامنظمی طبقه نرم و خیلی نرم، نامنظمی طبقه ضعیف.
2- بررسی کنترل جابجایی طبقات.
3- کنترل دوره تناوب تحلیل و مقایسه آن با دوره تناوب تجربی.
4- کنترل لنگر واژگونی سازه.
5- کنترل مولفه قائم نیروی زلزله در بالکن‌ها
6- کنترل دیافراگم جهت صلبیت کف.
7- بررسی ضریب نامعینی سازه.
8- در صورت انجام تحلیل دینامیکی، کنترل کفایت تعداد مودهای نوسانی مورد استفاده.
9- کنترل کفایت تعداد سعی و خطاهای انجام شده در تحلیل P-Delta
10- کنترل بارهای ثقلی قرار داده شده بر روی سازه.
11- کنترل درصد آرماتور تیرها و ستون‌ها (در سازه‌های بتنی)
12- کنترل ستون‌ها برای ترکیب بارهای تشدید یافته (در سازه فولادی)
13- کنترل سازه برای زلزله بهره‌برداری (در صورت نیاز)
14- بررسی همپایه بودن برش پایه استاتیکی و دینامیکی.
15- بررسی خطاهای احتمالی در حین تحلیل و رفع آنها.
 
@AlirezaeiChannel دکتر علیرضایی

  • مهندس علیرضا خویه

در تحلیل استاتیکی این قابلیت وجود دارد که نیروی برشی زلزله (مثلا در سازه های دارای دیوار حائل) از تراز روی دیوار حائل اعمال شود ،اما در تحلیل دینامیکی این امکان وجود ندارد، مشکل کجاست و راه حل چیست؟
در پاسخ باید گفت در تحلیل استاتیکی، وقتی تراز پایه را به روی دیوارهای حائل بیاوریم، در واقع جرم لرزه‌ای زیر تراز پایه را مشارکت نداده‌ایم و در همپایه سازی با برش پایه دینامیکی نیز این اثر را لحاظ نموده‌ایم. توجه شود که در تحلیل دینامیکی، معیار برش پایه، همان برش پایه استاتیکی است و نه برش پایه دینامیکی و تنها از توزیع بارهای دینامیکی استفاده می‌کنید. در این حالت همپایه سازی در همان نقطه که تراز را به عنوان تراز پایه در نظر گرفته‌اید، انجام دهید. توجه شود که در این حالت جابجایی مودی برای طبقاتی که دیوار حائل دارند، بسیار ناچیز است.نکته مهم بعدی اینکه، در اکثر مواقع شرایط بند 3-3-1-2 اقناع نشده و قادر به بالا آوردن تراز پایه نیستیم. در خیلی از موارد اما می‌توان، از مفاد بند 3-3-5-9-2 (حالت خاص ترکیب سیستم‌ها در ارتفاع) استفاده نمود و تراز پایه را از روی دیوار حائل متصور شد. طبق ضوابط این بند، شما باید بخش بالایی را با پای گیردار و بصورت مجزا تحلیل نمایید و اثر عکس‌العملی بخش بالایی را بر روی قسمت پایینی را رعایت ضوابط این بند، به بخش پایینی اعمال نمایید. پس در این حالت مشکلی در تحلیل #دینامیکی نیز نخواهید داشت.
 
در حالتی که شرایط بند 3-3-5-9-2 برقرار باشد، می‌توانید گره‌های روی تراز پایه (روی دیوار حائل را مقید کنید):
در صورتی که سه شرط زیر برآورده شود می‌توان از روش دو مرحله‌ای جهت تحلیل سازه استفاده نمود.
قسمت بالایی سازه نرم‌تر از قسمت تحتانی آن باشد،
میانگین سختی قسمت پایینی 10 برابر میانگین سختی قسمت بالایی باشد.
دوره تناوب کل سیستم بیش از 1.1 برابر دوره تناوب قسمت بالایی نباشد.
توجه: در بند ب این مورد در استاندارد 2800 به اشتباه نوشته شده، #دوره_تناوب کل سیستم بیش از 1.1 برابر دوره تناوب قسمت بالایی «باشد» که صحیح آن عبارت «نباشد» است و در 2800 این کلمه غلط ویرایشی است. آن را اصلاح کنید.
منبع: کانال دکتر علیرضایی @AlirezaeiChannel

  • مهندس علیرضا خویه

سه روش برای طراحی دیوار برشی وجود دارد:
1-روشSimplified T , C روش تبدیل لنگر و نیروی محوری دیوار به دو ستون که به روش المان مرزی معروف است و بصورت دستی نیز قابل انجام است.در این روش میبایست حداکثر درصد فولادی کششی و فشاری المان های مرزی برای طراحی اجزای لبه ای برابر 0.03 همانند ستون های معمولی تعریف گردند.این روش با توجه به عدم در نظر گرفتن میانه دیوار برای تحمل لنگر وارده در طبقات در جهت اطمینان است.(جان تنها برش را تحمل مینماید)
2- روش Uniform Reinforcing که روش میلگرد گذاری یکنواخت است و دورتادو دیوار از یک میلگرد یکنواخت استفاده میشود و بیشتر برای دیوارهای مستطیلی که در دو لبه خود دارای ستون نیستند مناسب است.
3- General Reinforcing که در این روش با استفاده از Section Designer مقطع دیوار ساخته شده و به دیوار ها اختصاص داده میشود و سس طراحی یا کنترل برای هر نوع دیواری انجام میپذیرد.
حداکثر و حداقل درصد میلگرد قائم دیوار مطابق آیین نامه آبا به ترتیب 0.04 (با رعایت محل وصله=0.02 ) و 0.0025 میباشد.
کنترل المان مرزی:
طبق آیین نامه میتوان اجزای لبه ای را در محل هایی که تنش فشاری دیوار کمتر از 0.15 fc می شودقطع کرد.چنانچه این ضابطه رعایت نگردد میتوان ضخامت پوسته دیوار را افزایش داد.
برای مدل کردن اثر دیوار برشی در پی میتوانید از تیر عمیق که عمق آن برابر ارتفاع دیوار و عرض آن هم ضخامت دیوار است استفاده کنید.لازم به ذکر است درصورت شبکه بندی دیوار برشی در Etabs با انتقال نتایج به Safe برنامه یکسری تیر عمیق به ارتفاع دیوار و عرض آن در محل دیوار برشی ایجاد و نیروهای دیوار را در محل گره های محل شبکه بندی دیوار منتقل میکند

  • مهندس علیرضا خویه