مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۵ مطلب با کلمه‌ی کلیدی «بتن مقاوم» ثبت شده است

کرمو شدگی بتن (علل و راهکارهای)

علت های کرمو شدن بتن و روش های ترمیم بتن

 

کرمو شدگی بتن اصطلاحی است که برای توصیف مناطقی از بتن که در آن ها درشت دانه ها جدا از مخلوط بتن جدا شده اند . این ممکن است به دلیل عدم وجود مواد ریز کافی در مخلوط باشد ، ممکن است به دلیل دانه بندی نادرست سنگدانه یا اختلاط نادرست باشد. با افزایش مقدار ماسه و سیمان مخلوط و با مخلوط کردن مناسب و تراکم و ویبره می توان این امر را اصلاح کرد. از طرف دیگر ، کرمو شدگی ممکن است در اثر نشت ملات  از بتن در ساخت و سازها  ایجاد شود. راه حل بارز این است که اطمینان حاصل شود که اتصالات قالب ها به خوبی چفت شده و بدون نشت شیره هستند.

  • مهندس علیرضا خویه
میکروسیلیس یا دوده سیلیسی که به عنوان ماده پرکننده ی اجزای تشکیل دهنده ی بتن عمل میکند، ماده ی سیلیسی ریزی است که ذرات آن 50 تا 100 برابر از ذرات سیمان کوچکتر بوده و باعث چسبندگی ذرات بین سیمان می شود. همچنین این ماده چسبندگی بین سیمان و سنگدانه را تا حد قابل قبولی افزایش می دهد. میکروسیلیس ماده ای بسیار نرم و به شکل پودر می باشد و حاوی مواد غیربلوری با قطرهای بین 0.2 تا 0.5 میکرون است. میزان سیلیس در این ماده معموالً مقداری بین 85 تا 98 درصد است که میزان دقیق آن بستگی به نوع محصول کوره و کارخانه ی سیلیس دارد. در کوره هایی که مجهز به سیستم بازیابی حرارتی می باشند اگر دمای گاز خروجی حدود 800 درجه سانتیگراد باشد، آنگاه میکروسیلیس یا دوده سیلیسی حاصل دارای رنگ روشن است. در صورتی که دمای گاز خروجی حدود 200 درجه سانتیگراد باشد مقداری کربن سوخته در آن باقی می ماند و در نتیجه سیلیس خاکستری رنگ تولید می شود
. مقاومت بتن معمولا مهمترین معیار برای ارزیابی کیفیت بتن به کار برده می شود. افزایش مقاومت به مرور زمان بر اساس تداوم آبگیری سیمان وکاهش درصد تخلخل و فضای خالی بین مواد متشکله در مرحله ایجاد چسبندگی می باشد.میکروسیلیس موجود در بتن که یک ماده ی پوزولانی محسوب می شود، با هیدروکسیدکلسیم ناشی از هیدراتاسیون سیمان ترکیب شده و ترکیبی ژل مانند می سازد. این ترکیب، عامل اصلی افزایش مقاومت و کاهش تخلخل ذرات تشکیل دهنده بتن می باشد.
کریستال های بزرگ هیدروکسیدکلسیم در فصل مشترک سنگدانه و خمیر، مانع افزایش مقاومت می شود که میکروسیلیس تحت واکنش پوزولانی با هیدروکسید کلسیم آن را به اجزاء مقاومی به نام سیلیکات کلسیم هیدراته تبدیل می کند و بدین ترتیب باعث افزایش مقاومت فشاری بتن می شود
خواص مکانیکی مختلف بتن، همانند مقاومت و دوام، متأثر از پارامترهای زیادی است .گرایش عمومی محققان این است که تأثیر پارامترهای مختلف بطور همزمان روی مقاومت بتن را بررسی کرده تا درنهایت مقادیر بهینه آنها برای مقاومت فشاری ماکزیمم بدست آید .
  • مهندس علیرضا خویه

<br /> بتن انعطاف پذیر

مهندس علیرضا خویه | | ۰ نظر
بتن انعطاف پذیر
بتن جدید که « کامپوزیت سیمانی مهندسی »، نامیده شده به دلیل عمر طولانی در دراز مدت از بتن معمولی ارزان‌تر است. دانشمندان دانشگاه میشیگان گونه جدیدی از بتن مسلح با الیاف ساخته‌اند که از بتن عادی ۴۰ درصد سبک‌تر و در برابر ترک خوردن ۵۰۰ بار مقاوم‌تر است.
عملکرد این بتن جدید از یک طرف به دلیل وجود الیاف نازکی است که ۲ درصد حجم ملات بتن را تشکیل می‌دهد و از طرف دیگر به این خاطر است که خود بتن از موادی ساخته شده است که برای ایجاد حداکثر انعطاف‌پذیری طراحی شده‌اند.
به گفته دانشمندان، بتن جدید که «کامپوزیت سیمانی مهندسی»، نامیده شده، به دلیل عمر طولانی‌تر در دراز مدت از بتن معمولی ارزان‌تر است. به گفته «ویکتور لی» استاد گروه مهندسی سازه «دانشگاه میشیگان» و سرپرست تیم سازنده بتن، تکنولوژی کامپوزیت سیمانی تاکنون در پروژه‌هایی در ژاپن، کره، سوئیس و ایتالیا به کار گرفته شده است. استفاده از آن در ایالات متحده به نسبت کندتر بوده. این در حالی است که بتن متعارف دارای مشکلات بسیاری از جمله نداشتن دوام و پایداری، شکست در اثر بارگذاری شدید و هزینه‌های تعمیر در اثر شکست است. به گفته « لی »، بتن نشکن یا انعطاف‌پذیر به جز شن درشت از همان مواد تشکیل‌دهنده بتن معمولی ساخته شده است. بتن نشکن کاملا شبیه بتن عادی است اما تحت کرنش‌های بسیار بزرگ، بتن کامپوزیت سیمانی تغییر شکل می‌دهد، این قابلیت از آن جا ناشی می‌شود که در این نوع بتن؛ شبکه الیاف داخی سیمان قابلیت لغزیدن داشته و در نتیجه انعطاف‌ناپذیری بتن که باعث تردی و شکنندگی است، از میان می‌رود.
امسال برای اولین بار، « اداره حمل و نقل میشیگان » برای نوسازی قسمتی از عرشه پل « گرواستریت » بر فراز بزرگراه «۴ و I» از کامپوزیت سیمانی استفاده می‌کند. دالی از جنس کامپوزیست سیمانی جایگزین یک مفصل انبساطی در این قسمت از پل خواهد شد تا با متصل کردن دال‌های بتنی مجاور به هم، عرشه‌ای یکنواخت از بتن به وجود آورد. استفاده از مفصل انبساطی به عرشه بتنی قابلیت حرکت در اثر تغییرات را می‌بخشد. اما در هنگام گیر کردن مفصل‌ها، مشکلات زیادی پیش می‌آید.دانشمندان انتظار دارند استفاده از کامپوزیت سیمانی باعث صرفه‌جویی در هزینه‌ها شود.
اگر چه هنوز مطالعات دراز مدت زیادی برای تایید عملکرد کامپوزیت سیمانی مورد نیاز است، مقایسه‌های انجام شده در « مرکز سیستم‌های پایدار»، از « دانشکده منابع طبیعی و محیط زیست »، به همراه گروه « لی »، نشان می‌دهد که در یک دوره ۶۰ ساله، استفاده در عرشه پل، کامپوزیت سیمانی نسبت به بتن عادی ۳۷ درصد ارزان‌تر است، ۴۰ درصد انرژی کمتری مصرف می‌کند و باعث کاهش انتشار دی اکسید کربن تا ۳۹ درصد می‌شود.
  • مهندس علیرضا خویه
در مواقعی که امکان ایجاد یک شکاف سطحی بر روی سطح بتن وجود داشته باشد، روش مقاوم‌سازی به روش NSM انتخاب بسیار عاقلانه‌ای می‌باشد. این روش نیاز به آماده‌سازی سطح را به میزان بالایی کاهش می‌دهد و همچنین ریسک ایجاد شرایط بحرانی در اجرای موفق و مؤثر سیستم مقاوم‌سازی و نیاز به اجرای سیستم‌های Lay-Up در کارگاه را از بین می‌برد. به دلیل اینکه میلگرد و یا لمینیت در سطح بیشتری به بتن چسبیده، لذا در این سیستم هنگام انتقال یک نیروی مشابه درروش EBR میزان کمتری تنش برشی در بتن ایجاد می‌شود. ازاین‌رو طول توسعه (Development Length) درروش NSM بسیار کمتر بوده و می‌توان تقریباً از کل ظرفیت مقاومت FRP استفاده کرد پیش ازآن‌که گسیختگی ناشی از چسبندگی حاصل شود. اجرای این سیستم نیاز به نیروی آموزش‌دیده خاصی ندارد و طراحی آن با در نظر گرفتن راهنمایی‌های ACI 440-2 انجام می‌شود.
به‌عبارت‌دیگر درروش NSM، همان‌طور که در شکل زیر مشاهده می‌شود نوارها یا میلگردهای مصالح مقاوم کننده در شیارهایی که در وجه کششی بتن ایجادشده‌اند، چسبانده می‌شوند و پوشش سیمانی و یا چسب اپوکسی روی آن‌ها قرار می‌گیرد. به‌طورکلی برخی از مزایای روش‌های NSM نسبت به روش EBR عبارتند از: بهبود پیوستگی و انتقال نیرو به بتن اطراف به دلیل محصور شدن نوار داخل شیار، محافظت از نوار در برابر عوامل محیطی خارجی و عدم نیاز به آماده‌سازی سطحی بتن بعد از ایجاد شیارها.
۱۰۶۰_orig
راهنمای نصب سیستم مقاوم‌سازی به روش NSM
گام اول) ابتدا محل شکاف طبق نقشه‌های تأمین‌شده توسط مهندس طراح مشخص‌شده و با ماژیک نشان می‌خورد. سپس توسط دستگاه مناسب و حفظ مسائل ایمنی شکاف ایجاد می‌شود (تصویر ۱). بعد نهایی (عمق و عرض) این شکاف برای میلگردهای FRP معمولاً ۱٫۵ برابر قطر میلگرد و در لمینیت ها عرض شکاف ۳ برابر ضخامت لمینیت و عمق آن برابر ۱٫۵ برابر عرض لمینیت (تصویر ۲)  است.
۹۸۵_orig۹۸۴_orig
نکات اجرایی این گام:
استفاده از ابزار مناسب همچون یک فرز با تیغه الماس، ریل هدایت کننده تیغه در مسیر مستقیم و سایر ابزارهای دیگر ایجاد شکاف را آسان‌تر می‌کنند. توصیه می‌شود در برخی از موارد به‌جای برش یک مرحله‌ای شکاف چند خط شکاف ایجاد شود و سپس بتن بین آن‌ها برداشته شود تا شکاف نهایی ایجاد شود.
گام دوم) قلم‌تراش کردن تکه‌های بتن در شکاف که توسط فرز برش نخورده‌اند و ایجاد یک شکاف عاری از هرگونه بتن و سنگدانه (تصویر ۳).
۹۸۶_orig
گام سوم) داخل شکاف از وجود هرگونه گردوغباری توسط پمپ هوا یا جاروبرقی پاک شود.
نکته اجرایی این گام: هیچ نیازی به برس زدن و ایجاد سطح غیر صاف با هر وسیله‌ای وجود ندارد.
گام چهارم) برای اینکه پس از اجرای سیستم مقاوم‌سازی ظاهر عضو بتنی آسیبی نبیند و به خاطر مسائل زیبایی می‌توان سطح کنار شکاف توسط نوارهایی پوشیده شود تا حین تزریق چسب به بتن بیرون شکاف نچسبد. (تصویر ۴)
نکته اجرایی این گام: برای افزایش سرعت و تسهیل این مرحله نواری یک پارچه روی شکاف و بتن اطرافش قرار می‌دهیم و سپس با کاتر روی شکاف را برش می‌زنیم.
۹۸۹_orig
گام پنجم) شکاف را تقریباً تا نیمه با چسب پر می‌کنیم (تصویر ۵).
۹۸۸_orig
گام ششم) میلگرد و یا لمینیت را آغشته به چسب کرده و در داخل شکاف فرو می‌بریم. در این مرحله باید مطمئن شویم که چسب بدون اینکه حباب‌های هوا در آن ایجاد شود بتواند FRP را احاطه کند.
گام هفتم) داخل شکاف را کامل با چسب پر می‌کنیم تا مطمئن شویم که FRP کاملاً پوشانده شده است (تصویر ۶).
۹۹۰_orig
گام هشتم) اضافه چسب توسط لیسه یا ماله (تصویر ۷) برداشته شود.
۹۹۱_orig
گام نهم) نواری که در گام چهارم بر روی سطح بتن قرار داده بودیم را از بتن جدا می‌کنیم (تصویر ۸).
نکته اجرایی این گام: پیش از اینکه چسب سفت شود این کار انجام شود.
۹۹۲_orig
درنهایت سیستم مقاوم‌سازی شده مطابق تصویر ۹ زیر خواهد بود.
۹۹۴_orig
  • مهندس علیرضا خویه
  • انواع خرابیهای بتن
- شیمیایی:
1) تهاجم سولفات
2) تهاجم کلراید
3) کربناتاسیون
4) واکنش قلیایی سنگدانه ها
  • فیزیکی:
  • 1) یخ زدن و آب شدن
- مکانیکی:
  • .سایش
  • .فرسایش
  • .خلأزایی
 
  • تهاجم سولفات
 
  • این محصول را اترینگایت یا میکرب سیمان می نامند.
  • ویژگی اترینگایت: افزایش حجم زیاد (حتی تا 15برابر حجم اولیه)
  • نتیجه: افزایش حجم تدریجی و نهایتاً خرد شدن بتن
  • سولفات اساساً بر روی بتن تأثیر منفی دارد.
  • گچی که به سیمان اضافه می کنیم موجب می شود که کمی اترینگایت تشکیل شود، ولی میزان آن کنترل شده است.
  • اترینگایت ناشی از گچ پراکنده است ولی اترینگایت ناشی از سولفاته شدن گسترده در تمام سطح است.
  • روشهای تشخیص خرابی سولفاتی
  • .سفیدک (ناشی از تشکیل آهک) (غیردقیق و احتمالاتی) (مشکل آن است که انواع سفیدکها، ازجمله کلروری داریم.)
  • .تشخیص اترینگایت از طریق میکروسکوپ الکترونی (SEM) (بلورهای آن سوزنی شکل است)
  • .مشاهدة ترک ظاهری (پس از 15-5 سال)
  • آزمایش شیمیایی سطح بتن
  • روشهای پیشگیری از تبعات منفی تهاجم سولفات
  • .کنترل مصالح بتن (سنگدانه، آب،...) از نظر میزان سولفات
  • .استفاده از بتن با کیفیت بالا (w/c پایین، تراکم زیاد)؛ تأخیر و کندی خرابی
- عمل آوری کافی و مناسب (کامل شدن فعل و انفعالات، پر شدن فضای خالی، تشکیل شدن ژل به میزان کافی)
- مصرف سیمان نوع5 (مشروط به عدم حضور کلراید)
- مصرف سیمان نوع دو (تهاجم کم سولفات، یا تهاجم توأم سولفات و کلراید)
- مصرف پوزولانهای طبیعی و مصنوعی
- کاهش مصرف سیمان
  • آزمایشهای خرابی سولفات
  • .آزمایش درازمدت
  • .آزمایشهای کوتاه مدت: محلول 4درصد سولفات سدیم
 
موارد کنترلی در آزمایشها:
الف) مقاومت
ب) انبساط نمونه
پ) وضع ظاهری و بررسی ترکها
ت) تعیین میزان سولفات در عمق نمونه
ث) میکروسکوپ الکترونی
  • تهاجم کلراید
(آند)
(کاتد)
 
  • تشکیل پیل الکتروشیمیایی
  • یون کلراید cl- ، همچنین امر را با شدت بسیار زیاد انجام می دهد و موجب تشدید خوردگی می شود.
  • نمونه هایی از خرابی سازه‌های بتنی در سواحل خلیج فارس ( بندر بوشهر)
  • موجب خوردگی موضعی و چال افتادگی می شود.
  • افزایش حجم آرماتور به علت زنگ زدگی؛ در نتیجه ترک خوردن بتن
  • مهمترین نوع خرابی است.
  • فقط در بتن مسلح است.
  • موجب از بین رفتن محیط قلیایی و پاسیویتة بتن می شود.
    (همین امر در تهاجم اسیدها و کربناتاسیون نیز اتفاق می افتد)
  • در بتن پیش تنیده چون فولاد تحت تنش است خوردگی هم شدیدتر است و هم خطرناکتر.
  • در اینجا عامل مثبت است زیرا موجب تشکیل نمک فریدل
    می شود.
  • منشأ کلراید: کلراید همراه مصالح، آب دریا، مواد یخ زدا، سوختن
    پی وی سی
  • روش تشخیص خرابی کلرایدی
  • .بازدید ظاهری (ایجاد ترک، علائم و لکه های زنگ،...)
  • .آزمایش شیمیایی، تعیین مقدار یون کلراید در سطح و در اعماق بتن
  • .استفاده از دستگاه نیم پیل
  • استفاده از دستگاه گالواپالس
  • روشهای پیشگیری از تبعات منفی یون کلراید
  • .کنترل مقدار یون کلراید در سطح بتن
  • .عدم مصرف کلرورکلسیم (به عنوان زودگیرکننده) در بتن آرمه
  • .بتن با کیفیت مناسب: w/c پایین، نفوذپذیری کم و تراکم زیاد، عمل آوری مناسب
  • .شستشوی مصالح از املاح
  • .استفاده از آب شیرین
  • پوشش کافی بتن روی آرماتور
7) استفاده از پوزولان
8) عدم استفاده از سیمان نوع پنج
9) استفاده از آرماتور با پوشش اپوکسی
10) استفاده از فولاد زنگ نزن
11) حفاظت کاتدیک (مکانیزم: برقراری جریانی برخلاف جریان پیل خوردگی)
- یکی از مکانیزمهای حفاظت کاتدیک: برقراری جریانی برخلاف جریان پیل خوردگی (ولتاژ ضعیف در حدود 6-5 ولت)
- در حفاظت کاتدیک، یک آند قربانی ایجاد می کنیم که آرماتور سالم بماند.
12) استفاده از آرماتورهای پلیمری
13) استفاده از مواد بازدارنده یا ممانعت کننده از خوردگی (نظیر نیتریت کلسیم) (افزایش      )
14) استفاده از غشاء های آب بند (memberanes) (عملکرد حدود 20 سال)
15) استفاده از خمیرهای آب بندی (sealers)
(عملکرد حدود 5سال)
  • آزمایشهای پیش بینی و پیشگیری
  • .RCPT
  • .نفوذ سطحی
  • .نفوذپذیری با جیوه
  • .نفوذپذیری با آب
  • نفوذپذیری با گاز
  • کربناتاسیون
در جو وجود دارد.
 
 
  • قلیاییت بتن کم می شود، لذا پاسیویته کم می شود، لذا زمینه برای خرابیهای دیگر (زنگ زدن، تهاجم کلراید) فراهم می شود.
  • شدیدترین حالت واکنش، در رطوبت نسبی 60 تا 70درصد است.
  • روش تشخیص کربناتاسیون
  • .فنل فتالئین (محیط کربناته شده بیرنگ، وگرنه ارغوانی)
    - از محلول فنل فتالئین (2درصد، حل شده در الکل اتیلیک استفاده می کنیم).
روشهای پیشگیری از تبعات منفی کربناتاسیون
  • .استفاده از بتن با کیفیت بالا ( w/c، تراکم، عمل آوری)
  • .پوشش مناسب
  • .عدم استفاده از بخاریهای احتراقی در محیطهای بسته
  • .استفاده از پوزولان
 
 
  • واکنش قلیایی سنگدانه ها
 
 
 
  • دو محصول اخیر، ژل منبسط شونده هستند و با افزایش میزان آنها بتن دچار ترک خوردگی می شود.
  • این واکنش را سرطان بتن می گویند.
  • در فرمول فوق، سیلیس باید فعال یا آمورف باشد.
  • -به جای سیلیس، کربنات فعال نیز می تواند باشد.
  • -AAR= واکنش قلیایی سنگدانه ها
  • ASR= واکنش قلیایی سنگدانه های سیلیسی
  • ACR= واکنش قلیایی سنگدانه های کربناتی
  • شناسایی واکنش قلیایی سنگدانه ها
  • .ترک های پوست سوسماری یا نقشه ای یا موزاییکی
  • .مشاهده در زیر میکروسکوپ یا نور پلاریزه
(هاله ای از واکنشهای جدید، بیشتر به رنگ سفید، در اطراف سنگدانه ها)
  • آزمایشهای پیشگیرانه
  • .آزمایش پتروگرافی سنگدانه ها
    - نیاز به تخصص بالا دارد.
  • .آزمایش تسریع شده ASTM C289 (بر روی سنگدانه)
    - دوسه روزه است.
    - سنگدانه مستقیماً در سود قرار می گیرد.
    - انبساط نمونه را اندازه می گیرند.
  • .نمونة منشوری ملات ASTM C227
    - دو هفته ای است.
    - اندازه گیری انبساط (بیش از 1/0 درصد غیرمجاز)
  • نمونة منشوری بتن
    - یک ماهه، سه ماهه، شش ماهه است.
  • روشهای مقابله با تبعات منفی واکنش قلیایی سنگدانه ها
  • .آزمایش سنگدانه ها، نمونه های ملات و بتن ساخته شده قبل از ساخت بتن.
  • .استفاده از سیمان با قلیاییت کم
    - قلیاییت معادل سیمان کمتر از 6/0 درصد وزن سیمان
  • .خشک نگهداشتن بتن
  • مصرف سیمانهای پوزولانی (خاکستر بادی، سرباره، میکروسیلیس)
  • سایش (abrasion)
- در بتن های در معرض رفت و آمد و عبور و مرور (کارخانه ها، کفهای بتنی، پیاده روها، روسازی های بتنی)
  • روشهای پیشگیری از تبعات منفی سایش
  • .w/c پایین
  • .عمل آوری مناسب و خوب بویژه در روزهای اول (حداقل 7 روز)
  • .مقاومت زیاد
  • .جلوگیری از آب انداختگی (bleeding)
    - پرداخت صحیح لازم است.
    - پاشیدن سیمان باری صاف کردن سطح، مناسب نیست، بلکه روش صحیح این کار استفاده از بتن پرعیار برای بتن خارجی و پاشیدن سنگدانه های ریز است.
  • استفاده از سنگدانه های سخت
    - عدد لُس آنجلس کمتر از40 درصد
6) استفاده از میکروسیلیس  و سایر پوزولانها
7) انجام آزمایش دیسک چرخان به عنوان مکمل آزمایش لُس آنجلس (به دلیل ضعف آزمایش لُس آنجلس در ارزیابی پدیده)
  • فرسایش (erosion)
  • سایش در کانالها و سازه های آبی، بر اثر جریان آب توأم با مواد جامد.
  • مشابه پدیدة سایش است.
  • به مدلها و دستگاههای دقیقتری برای آزمایش پدیده نیاز است ازجمله سایش همراه با جریان آب، ماسه پاشی، و نظایر آن
  • روشهای مقابله نظیر سایش است.
  • خلأزایی (cavitation)
  • در سازه های هیدرولیکی پیش می آید.
  • بر اثر سرعت و تغییر سرعت، و سرعت زیاد بیش از m/s40، حبابهایی به وجود می آید.
  • فشار کم می شود، خلأ ایجاد می شود، حباب ایجاد می شود.
  • بر اثر از بین رفتن و شکسته شدن حبابها، بتن قلوه کن
    می شود.
  • در سرریز سدها بسیار اتفاق می افتد.
  • روشهای پیشگیری از تبعات منفی خلأزایی
  • .استفاده از بتن با مقاومت بالا
  • .w/c پایین
  • .ایجاد پیوستگی (bonding) بیشتر بین خمیر و سنگدانه
  • .استفاده از میکروسیلیس
  • .استفاده از بتن های پلیمری
  • .استفاده از بتن با الیاف فولادی و پلیمری
  • .عمل آوری خوب
  • ایجاد سطح صاف و صیقلی (زیرا سطح ناصاف و ناهموار موجب ایجاد تغییرات فشار و سرعت می شود)؛ (بتن پلیمری در این زمینه مناسب عمل می کند)؛ (در تعمیرات، می باید به این امر توجه بسیار جدی بشود وگرنه مشکل بیشتر می شود).
  • یخ زدن و آب شدن (freez-thaw)
- مکانیسم: افزایش تدریجی منافذ، و لذا کاهش مقاومت و دوام.
  • روشهای پیشگیری از تبعات منفی یخ زدن و آب شدن
  • .رعایت ضوابط بتن ریزی در هوای سرد.
  • .کاهش نفوذپذیری و کاهش منافذ (نتیجه: کاهش لوله های مویینه)
  • .عمل آوری و مواظبت و مراقبت مناسب، بویژه در سنین اولیة بتن
  • .کاهش w/c
  • مصرف مواد حباب هوازا
    - نقش آنها، کنترل انبساطهای ناشی از یخ زدن و آب شدن است.
  • آزمایش یخ زدن و آب شدن
  • -ساخت نمونه، سپس اندازه گیری موارد زیر:
  • کاهش وزن
  • میزان انبساط
  • کاهش مدول الاستیسیتة دینامیکی
  • مقاومت فشاری
  • مدول گسیختگی (مقاومت کششی حاصل از آزمایش خمشی)
- ازجمله پارامترهایی که در این آزمایشها تعیین می کنند، ضریب دوام (F) است.
 
  • مهندس علیرضا خویه