مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۳۶۸ مطلب با موضوع «نرم افزارهای مهندسی عمران» ثبت شده است

مش بندی Mesh سقف

مهندس علیرضا خویه | | ۰ نظر
مشبندی را می‌توانید به دو صورت انجام دهید. یا از همین روش که فرمودین بصورت دستی با انتخاب سقف و استفاده از مسیر Edit menu > Edit Shells > Divide Shells آن را مشبندی کنید. در کادر ظاهر شده گزینه‌ها مختلفی برای مشبندی وجود دارد. یا اینکه از مسیر Assign menu > Shell > Floor Auto Mesh Options آن را بصورت خودکار مشبندی نمایید.
در این حالت برای دیدن ابعاد و مشبندی انجام شده باید از مسیر View menu > Set Display Options گزینه Shell Analysis Mesh را تیک بزنید تا دیدن دیدن مشبندی امکان پذیر شود.
@AlirezaeiChannel
  • مهندس علیرضا خویه

 جهت عدم کنترل ضوابط لرزه‌ای، باید در بخش تنظیمات آیین‌نامه‌ای گزینه Seismic Design Category را در یکی از حالات A، B یا C قرار داده و همچنین عدد مقابل System R را عددی کمتر مساوی 3 قرار دهید تا ضوابط لرزه‌ای کنترل نشود.

اگر گزینه Ignore Special Seismic Load? را در حالت Yes قرار دهید تنها از ترکیب بارهای تشدید یافته صرف نظر می‌شود. البته هر یک از مواردی که صرف نظر میکنید باید بصورت دستی کنترل شود.

  • مهندس علیرضا خویه

بارگذاری مثلثی روی صفحات

مهندس علیرضا خویه | | ۰ نظر

 برای اعمال بار با توزیع غیر یکنواخت بر سطوح در برنامه ETABS می‌توان از ترفندها مختلفی استفاده نمود. معمولا از این توزیع غیر یکنواخت برای اعمال بارهای جانبی خاک استفاده می‌شود. یک راه اولیه و ساده این است که دیوار را در ارتفاع مشبندی نموده و به هر قطعه از مش آن متوسط بار گسترده در مرکز آن مش اعمال شود.

 

این روش یک روش ساده و تقریبی بوده که دقت آن به تعداد مش‌ها بستگی دارد. روش دوم که بصورت دقیق می‌باشد، برای این منظور بعد از انتخاب دیوار باید از مسیر Assign menu > Shell Loads > Non-uniform اقدام نمایید.البته بایستی قبلا باری که می‌خواهید به دیوار اختصاص دهید را از مسیر Define menu > Load Pattern ساخته باشید.

 

در کادر نشان داده شده گزینه Direction جهت اعمال بار را مشخص می‌کند. در بخش Non-uniform Load می‌توان الگوی بارگذاری غیر یکنواخت را تعیین نمود. در این بخش x، y و z بر حسب سیستم مختصات کلی بیان می‌شوند. مقدار A بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور X است. مقدار B بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور Y است. مقدار C بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور Z است.

 

@AlirezaeiChannel

  • مهندس علیرضا خویه

کاهش لرزش سقف عرشه فولادی

مهندس علیرضا خویه | | ۰ نظر

چند نکته قابل توجه جهت کاهش لرزش سقفهای عرشه فولادی :
1- فاصله دهانه های تیرهای فرعی در سقف عرشه فولادی

یکی از مهمترین عوامل در کاهش لرزش سقف عرشه فولادی فواصل تیرهای فرهی می باشد ، اگر فاصله تیرهای فرعی کمتر از 2/40 متر باشد با اجرای ورق عرشه به ضخامت 0/8 میلیمتر هیچ لرزشی در سقف نخواهیم داشت ، برای فواصل بیشتر باید ضخامت ورق را افزایش دهیم : یعنی دهانه 2/40 تا 2/60 از ورق 0/9 میلیمتر و از 2/60 تا 3/00 متر از ورق 1 میلیمتر و از 3/00 تا 3/30 از ورق 1/25 میلیمتر استفاده گردد ، فاصله تیر فرعی بیشتر از 3/30 به هیچ عنوان توصیه نمیگردد ، کما اینکه دستگاه های تولید ورق رول فرمینگ توان فرم دادن ورق با ضخامت بیشتر از 1/25 میلیمتر را ندارند

2- ضخامت ورق گالوانیزه سقف عرشه فولادی 
همانگونه که گفته شد انتخاب ورق با ضخامت نادرست با توجه به فواصل تیرریزی نیز از عوامل موثر در لرزش سقف ساختمان خواهد بود.

3- ارتفاع عرشه

ارتفاع عرشه یا بلندای گام ورق نیز تاثیر به سزایی در کاهش لرزش سقف دارد ، توصیه ما در هر فاصله دهانه ای استفاده از ورق عرشه با بلندای گام 75 میلیمتر می باشد .


4- بتن ریزی

بر طبق ضوابط مبحث دهم مقررات ملی ساختمان، حداقل ضخامت بتن بر روی گام فوقانی ورق عرشه فولادی در حدود ۵ سانتیمتر می باشد. هر چند که در عمل ۶ سانتیمتر نتیجه مطلوب تری حاصل شده است، اما بتن ریزی کمتر از ۵ سانتیمتر در افزایش لرزش سقف موثر است .


5-  اجرای صحیح عرشه

فیکس کردن ورق با میخ و چاشنی انفجاری ، در فواصل مناسب ( برای هر متر مربع حداقل از 2 عدد میخ و چاشنی انفجاری استفاده گردد ) و استفاده از پیچ های خودکار در محلهای مورد نیاز ، نیز در کاهش لرزش سقف کمک میکند


رابطه عرض مفید فرمینگ ورق عرشه فولادی و لرزش سقف عرشه فولادی:

مطابق آئین نامه مقررات ملی ساختمان ایران مبحث دهم در صفحه ۱۲۶ بند ۱۰-۲-۸-۳-۳ :

ت) انتقال بار بین تیر فولادی و دال بتنی
ت-۱) نواحی لنگر خمشی مثبت

۱. مقاومت برش افقی مورد نیاز: برای عملکرد مختلط کامل، برش افقی مورد نیاز باید به شرح زیر برابر کوچکترین مقدار محاسبه شده بر اساس حالتهای حدی خردشدگی بتن و تسلیم کششی مقطع فولادی در نظر گرفته شود.

خرد شدگی بتن (۱۰-۲-۸-۲۰)
Vhu=0.85fcAc

تسلیم کششی مقطع فولادی (۱۰-۲-۸-۲۰)

در روابط فوق:
fc= مقاومت فشاری مشخصه نمونه استوانه ای بتن
Ac=سطح مقطع دال بتنی در محدوده عرض موثر ورق عرشه فولادی
As=مساحت مقطع فولادی
Fy=تنش تسلیم فولاد مقطع فولادی

۲. مقاومت برش افقی اسمی مقاومت برش افقی اسمی اعضای با مقطع مختلط بر دال بتنی و دارای برشگیر (گلمیخ) باید مطابق رابطه زیر بر اساس مقاومت برشی برشگیرها تعیین گردد. (۱۰-۲-۸-۲۱)

که در آن:
Qn=مجموع مقاومت های برشی اسمی برشگیرها (گلمیخ ها)در حد فاصل نقاط لنگر خمشی مثبت حداکثر و لنگر صفر مطابق مقررات بند ۱۰-۲-۸-۷ ۳.تعداد فاصله و مشخصات برشگیرها (گلمیخ ها)بایستی از طریق برقراری رابطه زیر و بدون احتساب ضریب کاهش مقاومت تعیین گردد. (۱۰-۲-۸-۲۲)

نتیجه گیری:

با توجه به اینکه مقدار خرد شدگی بتن کمترین مقدار در روابط فوق میباشد لذا هر چه سطح مقطع دال بتنی در محدوده عرض موثر ورق عرشه فولادی بیشترو مطابق استانداردها باشد مقاومت سقف عرشه فولادی در مقابل زلزله نیز بیشتر می شود.

  • مهندس علیرضا خویه

تحلیل حرارتی در Etabs

مهندس علیرضا خویه | | ۰ نظر
بارهای حرارتی وقتی که ابعاد سازه شما (یکی از اضلاع سازه) زیاد باشد، اثر تغییر شکل‌های ناشی از حرارات محیط افزایش یافته و بایستی اثر باری تحت این تغییر درجه حرارت سازه تحمل می‌کند را برای طراحی در نظر گرفت. نمونه بارز این مسئله در ریل راه آهن است که در قدیم برای اثرات انبساط در ریل آنها را به قطعاتی تقسیم می‌نمودند و با فاصله کمی از هم قرار می‌گرفت. در یک سازه با اضلاع طولانی نیز می‌توان از همین روش استفاده نمود و سازه را به بخش‌هایی تقسیم نمود تا اثر تغییرشکل‌ها محدود شود. فاصله بین دو سازه باید به میزان جابجایی ایجاد شده ناشی از دو سازه تحت تغییرات دما باشد. در صورتی که درز انبساط در نظر گرفته نشود، آنگاه بایستی سازه برای اثرات از بارهای حرارتی طراحی شود. طبق مبحث ششم، اثرات ایجاد شده ناشی از این بارهای حرارتی بایستی توسط دو ترکیب بار شماره 8 و 9 از ترکیب بارهای سازه‌های فولادی صفحه 16 و از ترکیب بارهای 6 و 7 سازه‌های بتنی صفحه 15 استفاده نمود. توصیه ASCE7-10 برای بارهای حرارتی به این صورت بوده و دو ترکیب بار زیر را پیشنهاد می‌دهد که مشابه مبحث ششم است:

❗️ When self-straining loads are combined with dead loads as the principal action, a load factor of 1.2 may be used. However, when more than one variable load is considered and self-straining loads are considered as a companion load, the load factor may be reduced if it is unlikely that the principal and companion loads will attain their maximum values at the same time. The load factor applied to T should not be taken as less than a value of 1.0.
When using strength design:

1.2D + 1.2T + 0.5L
1.2D + 1.6L + 1.0T
برای اعمال بار حرارتی بایستی کف طبقات از حالت صلب خارج شوند. در این حالت ممکن است برخی خروجی‌های برنامه مثل مرکز جرم وجود نداشته باشد که برای این موضوع می‌توانید دیافراگم را از نوع نیمه صلب (Semi Rigid) تعریف نمایید. در صورتی که دیافراگم صلب وجود داشته باشد، اثر بارهای حرارتی از بین خواهد رفت.
برای اعمال بارهای حرارتی به اجزای قابی بعد از انتخاب آنها از مسیر Assign menu > Frame Loads > Temperature اقدام می‌شود. در بخش Uniform Temperature Change  مقدار تغییرات دما بر حسب سانتیگراد وارد شود. اگر از واحدهای انگلیسی استفاده کرده باشید باید بر حسب فارنهایت وارد کنید. قبل از این کار از مسیر Define menu > Load Patterns یک حالت بار حرارتی بایستی ساخته شود. نوع این حالت بار را می‌توان از نوع Other انتخاب کرد و بصورت دستی در ترکیب بارهای مورد نظر نام برده شده در فوق قرار داد.
در سازه‌های بتنی، تیرها تنها برای لنگر M33 طراحی می‌شوند. بنابراین بارهای حرارتی که تولید نیروی محوری در آنها می‌کنند، اثری در طراحی ندارند مگر آنکه بارهای حرارتی تولید خمش کنند. برای این مورد می‌توان تیرها را بصورت ستون تعریف نمود و آن را در حالت گزینه Reinforcement to be Designed را انتخاب کرده و در بخش Number of Longitudinal Bars Along 2-dir Face عدد 2 را وارد نمایید تا میلگردها در لبه‌های بالا و پایین قرار گیرند.
طبق مبحث نهم در صورتی که نخواهیم تحلیل حرارتی انجام دهیم، طول سازه در مناطق خشک 25 متر، در مناطق معتدل 35 متر و در مناطق مرطوب 50 متر پیشنهاد شده است. مقدار حرارتی که بایستی اعمال شود، (تغییرات دما یا دمای ثانویه منهای دمای اولیه) برابر 60 درجه سانتیگراد است. برنامه هم از شما تغییرات دما را می‌گیرد.
یکی از مراجع قدیمی که متون جدید نیز به آن رجوع می‌دهند، Federal Construction Council's Technical Report No. 65 Expansion Joints in Buildings است که در ارتباط با بارهای حرارتی مطالبی دارد. به نظر می‌رسد مقادیری که مبحث نهم برای طول حداکثر سازه پیشنهاد داده به میزان زیادی محافظه کارانه باشد. شکل زیر از گزارش نامبرده شده اخیر است که اگر مقدار تغییرات دما را 60 درجه سانتیگراد (140 درجه فارنهایت) در نظر بگیریم، برای سازه‌های فولادی در شرایط منظم و مستطیلی حداکثر طول سازه 120 متر و برای دیگر سازه‌ها و یا سازه‌های نامنظم حداکثر طول 60 متر پیشنهاد شده است که از تمام مقادیر پیشنهادی مبحث نهم بیشتر است. البته این مقادیر درج شده در شکل برای حالتی بوده که سازه دارای تنها گرمایش داخلی بوده و ستون‌ها در پای خود مفصلی هستند. اگر ساختمان دارای تهویه مطبوع باشد طول مجاز را می‌توان تا 15% افزایش داد. اگر سازه گرمایش داخلی نداشته باشد مقادیر این شکل باید 33% کاهش داده شوند. در صورتی که ستون‌ها در پای خود بصورت گیردار باشند (مثل ستون‌های بتنی) مقادیر آن باید 15% کاهش داده شوند. اگر سختی جانبی سازه در یک جهت به میزان زیادی باشد (مثل سازه‌های دارای دیوار برشی) مقادیر این شکل بایستی 25% کاهش داده شوند.
اگر مطمئن باشیم که سفتکاری سازه در یک فصل و بدون تغییرات عمده دما تمام شده و تیرها و ستون‌های داخلی تحت شرایط محیطی شدید قرار نمی‌گیرند، می‌توان تنها پوسته خارجی سازه  را برای این بارهای طراحی نمود. در غیر اینصورت کل اجزای سازه بایستی برای بارهای حرارتی طراحی شوند.
@AlirezaeiChannel
 
http://etabs-sap.ir/thermal-analysis/
  • مهندس علیرضا خویه

مجموعه ی کامل آموزش SAP2000

مهندس علیرضا خویه | | ۰ نظر
  • مهندس علیرضا خویه

آموزش مدلسازی گنبد (منحنی) در ETABS با کمک اتوکد و اکسل

نمای نهایی 

حجم:2 مگابایت

  • مهندس علیرضا خویه
دانلود رایگان فیلم آموزشی برای تحلیل پوش آور ( push over )
فایل پیوست آموزش روش بار افزون یا پوش آور میباشد که توسط خانم مهندس نرگس توفیقی دستیار دکتر محمد قاسم وتر جهت استفاده در دروس بهسازی لرزه ای سازه ها و طراحی لرزه ای سازه ها  بر اساس عملکرد و برای دانشجویان تحصیلات تکمیلی (ارشد ودکتری) در پژوهشگاه بین المللی زلزله و دانشگاه آزاد  تهیه شده است...
برای دانلود فیلم آموزشی برای تحلیل پوش آور(push_over) اینجا کلیک کنید  ...
نمونه دیگر از فیلم آموزشی برای تحلیل پوش آور(push_over) تفکیک شده که لازم است بعد از دانلود با استفاده از نرم افزار Hjsplit یکپارچه شود  ...
://drvetr.blogfa.com/
آموزش خصوصی ایتبس Etabs
  • مهندس علیرضا خویه

دانلود کتاب آموزش SAP2000

مهندس علیرضا خویه | | ۰ نظر

دانلود بخشی از کتاب آموزش SAP2000

نویسنده : علیرضا خویه

مدرس دوره های تخصصی SAP2000

طراح و محاسب سازه های خاص

دریافت فایل
عنوان: آموزش SAP2000
حجم: 2.79 مگابایت
توضیحات: دانلود آموزش SAP2000

  • مهندس علیرضا خویه

طراحی و محاسبه سوله

مهندس علیرضا خویه | | ۰ نظر
  • مدلسازی

+ سیستم متداول برای اجرای سوله قاب خمشی فولادی + مهاربندی کابلی یا فولادی است.

+ براساس دیاگرام لنگرخمشی موثر بر اعضای سازه ، ممان اینرسی مورد نیاز مقاطع تغییر میکند. بنابراین از مقاطع غیر منشوری استفاده میشود.

+ اتصال گیردار قسمت های مختلف قاب با اتصال فلنچی و به صورت پیچ و مهره ایست.

+ مدلسازی قاب های سوله در نرم افزار ممکن است به صورت دو بعدی یا سه بعدی باشد. مدلسازی سه بعدی نتایج دقیق تری خواهد داشت و برای کنترل تغییر شکل های عمود بر صفحه قاب و هم چنین طراحی مهاربندها بهتر است.

+ اتصال پای ستون به فونداسیون به صورت مفصلی است که معمولا با نبشی جان اجرا میشود.

+ اتصال تیرهای میان قاب ها و هم چنین تیرهای رابط رفترها به صورت مفصلی است.

+ به منظور تامین یکپارچگی بین قاب های مجزا تحت اثر بارهای جانبی ، در صورت نیاز کابل های ضربدری به صورت سرتاسری در پیرامون سقف اجرا میشود.

+ در مرحله مدلسازی، تفاوت چندانی میان نرم افزار SAP و ETABS وجود ندارد. هرچند برای مدلسازی سه بعدی سازه های شیبدار نرم افزار SAP مناسب تر است.

+ در سوله های ورزشی چنانچه سالن دارای سکوی تماشاچیان باشد بهتر است مجموعه سکوی تماشاچیان با درز انقطاع و بصورت جداگانه از سوله مدل شود تا جرم زیاد مجموعه سکو باعث انتقال بار زلزله به بدنه سوله نشود. همچنین تقارن عملکردی سوله از بین نرود.

+ در صورت استفاده از کابل در مدل باید دقت شود در هیچ یک از نتایج تحلیل نیروی فشاری در کابل موجود نباشد، استاده از ضریب -1 در ترکیب های زلزله برای در نظر گرفتن اثر رفت و برگشت زلزله ممکن است باعث ایجاد این خطا در نرم افزار شود. نتایج تحلیل سازه در load case ها به گونه ایست که فقط کشش در کابل موجود است. ولی ضریب -1 موجود در ترکیب بار باعث استفاده ناصحیح از نتایج صحیح تحلیل در مرحله طراحی میشود.

  • بارگذاری

+ بار مرده شامل وزن اعضای سازه ، پرلین ها و پوشش سقف

+ بار برف با در نظر گرفتن اثر شیب و توزیع نامتوازن برف

+ بار باد ، اثر رفت و برگشت باد روی ستون ها و فشار و مکش عمود بر صفحه سقف

+ بار زلزله که عمدتا از جرم دیوارهای پیرامونی و برف ناشی می شود.

+ بارهای حراراتی ، انبساط و انقباض فولاد در شرایط متفاوت دمایی نسبت به حالت معیار

+ بار جرالثقیل در سوله های صنعتی

  • تحلیل

+ در صورت استفاده از مهاربندهای کابلی در مدل تحلیل سازه باید به صورت غیرخطی باشد. برای در نظر گرفتن هم افزایی بارها در تحلیل غیرخطی لازم است ترکیب های بار به صورت load case نیز تعریف شوند.

+ تحلیل غیرخطی و با در نظر گرفتن آثار مرتبه دوم ، مخصوصا در سوله های که دهانه بزرگ دارند ، برای کنترل دقیقتر تغییر شکل ها مفید است.

+ در صورت نیاز به انجام تحلیل غیرخطی ، نرم افزار SAP نسبت به ETABS دارای موتور تحلیل قویتر و سریعتریست.

  • طراحی

+ از آنجا که مراحل طراحی تیرورق ها دارای کنترل های متعدد است که بعضا باید به صورت دستی انجام گیرد و نرم افزار همه آن ها را کنترل نمیکند. بهتر است نسبت تنش ها دارای فاصله اطمینان کافی با حد بحرانی باشند.

+ استفاده توام از جوش و پیچ در مجموعه اتصال ها، به دلیل سختی متفاوت و جذب ناهماهنگ نیرو مجاز نیست.

+ اتصال مفصلی پای ستون در هر صورت دارای درصد مشخصی گیرداری و خمش ناشی از برون محوری است که بولت ها باید برای تحمل آن به همراه برش و آپلیفت کافی باشند.

+ استفاده از مصالح سنگین (مثل آجر گری و بلوک سیمانی) برای دیوارهای نسبتا ضخیم سوله، از آنجا که در صفحه عمود بر امتداد خود سختی ندارند و در عین حال جرم زیاد آن ها تولید نیروی بار اضافی زلزله میکند، اقتصادی نیست.

+ گرچه دیوارهای آجری در امتداد طولی سوله ها سختی قابل توجهی دارند ولی در نبود تحلیل دقیق عددی یا آزمایشگاهی و همچنین مکانیسم مشخص انتقال بار به زمین ، از نظر تئوری نمی توان روی سختی آن ها در طراحی حساب کرد. گرچه در عمل کمک کننده هستند.

+ فلسفه زلزله تشدید یافته در طراحی لرزه ای جلوگیری از کمانش ستون های متصل به مهاربند تحت بار محوری زلزله است. از طرفی مقطع ستون ها غیر منشوری ست و سطح مقطه در پای ستون  کم است. که این شرایط ممکن است کنترل زلزله تشدید یافته را غیرواقعی و سخت گیرانه کند. گرچه اشاره مشخصی در مراجع و آیین نامه ها به این موضوع نشده.

+ شیوه اتصال وال پست ها به رفتر (چنانچه وال پست ها در فایل مدل نشده باشد) باید به گونه ای باشد که بار ثقلی و جانبی را از قاب سوله جذب نکند. تا اعتبار نتایج تحلیل حفظ شده و مقطع وال پست صرفا برای باد و وزن دیوار متصل طراحی شود. اتصال به وسیله پیچ و سوراخ لوبیایی بلند میتواند مناسب باشد.


مستندات مرتبط:

+ ضوابط طرح و محاسبه ساختمان های صنعتی فولادی

+ نمونه دفترچه محاسبات نسبتا کامل برای طراحی سوله صنعتی



  • مهندس علیرضا خویه