مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۲۶۶ مطلب با موضوع «نرم افزارهای مهندسی عمران :: سپ sap2000» ثبت شده است

بارگذاری مثلثی روی صفحات

مهندس علیرضا خویه | | ۰ نظر

 برای اعمال بار با توزیع غیر یکنواخت بر سطوح در برنامه ETABS می‌توان از ترفندها مختلفی استفاده نمود. معمولا از این توزیع غیر یکنواخت برای اعمال بارهای جانبی خاک استفاده می‌شود. یک راه اولیه و ساده این است که دیوار را در ارتفاع مشبندی نموده و به هر قطعه از مش آن متوسط بار گسترده در مرکز آن مش اعمال شود.

 

این روش یک روش ساده و تقریبی بوده که دقت آن به تعداد مش‌ها بستگی دارد. روش دوم که بصورت دقیق می‌باشد، برای این منظور بعد از انتخاب دیوار باید از مسیر Assign menu > Shell Loads > Non-uniform اقدام نمایید.البته بایستی قبلا باری که می‌خواهید به دیوار اختصاص دهید را از مسیر Define menu > Load Pattern ساخته باشید.

 

در کادر نشان داده شده گزینه Direction جهت اعمال بار را مشخص می‌کند. در بخش Non-uniform Load می‌توان الگوی بارگذاری غیر یکنواخت را تعیین نمود. در این بخش x، y و z بر حسب سیستم مختصات کلی بیان می‌شوند. مقدار A بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور X است. مقدار B بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور Y است. مقدار C بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور Z است.

 

@AlirezaeiChannel

  • مهندس علیرضا خویه

کاهش لرزش سقف عرشه فولادی

مهندس علیرضا خویه | | ۰ نظر

چند نکته قابل توجه جهت کاهش لرزش سقفهای عرشه فولادی :
1- فاصله دهانه های تیرهای فرعی در سقف عرشه فولادی

یکی از مهمترین عوامل در کاهش لرزش سقف عرشه فولادی فواصل تیرهای فرهی می باشد ، اگر فاصله تیرهای فرعی کمتر از 2/40 متر باشد با اجرای ورق عرشه به ضخامت 0/8 میلیمتر هیچ لرزشی در سقف نخواهیم داشت ، برای فواصل بیشتر باید ضخامت ورق را افزایش دهیم : یعنی دهانه 2/40 تا 2/60 از ورق 0/9 میلیمتر و از 2/60 تا 3/00 متر از ورق 1 میلیمتر و از 3/00 تا 3/30 از ورق 1/25 میلیمتر استفاده گردد ، فاصله تیر فرعی بیشتر از 3/30 به هیچ عنوان توصیه نمیگردد ، کما اینکه دستگاه های تولید ورق رول فرمینگ توان فرم دادن ورق با ضخامت بیشتر از 1/25 میلیمتر را ندارند

2- ضخامت ورق گالوانیزه سقف عرشه فولادی 
همانگونه که گفته شد انتخاب ورق با ضخامت نادرست با توجه به فواصل تیرریزی نیز از عوامل موثر در لرزش سقف ساختمان خواهد بود.

3- ارتفاع عرشه

ارتفاع عرشه یا بلندای گام ورق نیز تاثیر به سزایی در کاهش لرزش سقف دارد ، توصیه ما در هر فاصله دهانه ای استفاده از ورق عرشه با بلندای گام 75 میلیمتر می باشد .


4- بتن ریزی

بر طبق ضوابط مبحث دهم مقررات ملی ساختمان، حداقل ضخامت بتن بر روی گام فوقانی ورق عرشه فولادی در حدود ۵ سانتیمتر می باشد. هر چند که در عمل ۶ سانتیمتر نتیجه مطلوب تری حاصل شده است، اما بتن ریزی کمتر از ۵ سانتیمتر در افزایش لرزش سقف موثر است .


5-  اجرای صحیح عرشه

فیکس کردن ورق با میخ و چاشنی انفجاری ، در فواصل مناسب ( برای هر متر مربع حداقل از 2 عدد میخ و چاشنی انفجاری استفاده گردد ) و استفاده از پیچ های خودکار در محلهای مورد نیاز ، نیز در کاهش لرزش سقف کمک میکند


رابطه عرض مفید فرمینگ ورق عرشه فولادی و لرزش سقف عرشه فولادی:

مطابق آئین نامه مقررات ملی ساختمان ایران مبحث دهم در صفحه ۱۲۶ بند ۱۰-۲-۸-۳-۳ :

ت) انتقال بار بین تیر فولادی و دال بتنی
ت-۱) نواحی لنگر خمشی مثبت

۱. مقاومت برش افقی مورد نیاز: برای عملکرد مختلط کامل، برش افقی مورد نیاز باید به شرح زیر برابر کوچکترین مقدار محاسبه شده بر اساس حالتهای حدی خردشدگی بتن و تسلیم کششی مقطع فولادی در نظر گرفته شود.

خرد شدگی بتن (۱۰-۲-۸-۲۰)
Vhu=0.85fcAc

تسلیم کششی مقطع فولادی (۱۰-۲-۸-۲۰)

در روابط فوق:
fc= مقاومت فشاری مشخصه نمونه استوانه ای بتن
Ac=سطح مقطع دال بتنی در محدوده عرض موثر ورق عرشه فولادی
As=مساحت مقطع فولادی
Fy=تنش تسلیم فولاد مقطع فولادی

۲. مقاومت برش افقی اسمی مقاومت برش افقی اسمی اعضای با مقطع مختلط بر دال بتنی و دارای برشگیر (گلمیخ) باید مطابق رابطه زیر بر اساس مقاومت برشی برشگیرها تعیین گردد. (۱۰-۲-۸-۲۱)

که در آن:
Qn=مجموع مقاومت های برشی اسمی برشگیرها (گلمیخ ها)در حد فاصل نقاط لنگر خمشی مثبت حداکثر و لنگر صفر مطابق مقررات بند ۱۰-۲-۸-۷ ۳.تعداد فاصله و مشخصات برشگیرها (گلمیخ ها)بایستی از طریق برقراری رابطه زیر و بدون احتساب ضریب کاهش مقاومت تعیین گردد. (۱۰-۲-۸-۲۲)

نتیجه گیری:

با توجه به اینکه مقدار خرد شدگی بتن کمترین مقدار در روابط فوق میباشد لذا هر چه سطح مقطع دال بتنی در محدوده عرض موثر ورق عرشه فولادی بیشترو مطابق استانداردها باشد مقاومت سقف عرشه فولادی در مقابل زلزله نیز بیشتر می شود.

  • مهندس علیرضا خویه

تحلیل حرارتی در Etabs

مهندس علیرضا خویه | | ۰ نظر
بارهای حرارتی وقتی که ابعاد سازه شما (یکی از اضلاع سازه) زیاد باشد، اثر تغییر شکل‌های ناشی از حرارات محیط افزایش یافته و بایستی اثر باری تحت این تغییر درجه حرارت سازه تحمل می‌کند را برای طراحی در نظر گرفت. نمونه بارز این مسئله در ریل راه آهن است که در قدیم برای اثرات انبساط در ریل آنها را به قطعاتی تقسیم می‌نمودند و با فاصله کمی از هم قرار می‌گرفت. در یک سازه با اضلاع طولانی نیز می‌توان از همین روش استفاده نمود و سازه را به بخش‌هایی تقسیم نمود تا اثر تغییرشکل‌ها محدود شود. فاصله بین دو سازه باید به میزان جابجایی ایجاد شده ناشی از دو سازه تحت تغییرات دما باشد. در صورتی که درز انبساط در نظر گرفته نشود، آنگاه بایستی سازه برای اثرات از بارهای حرارتی طراحی شود. طبق مبحث ششم، اثرات ایجاد شده ناشی از این بارهای حرارتی بایستی توسط دو ترکیب بار شماره 8 و 9 از ترکیب بارهای سازه‌های فولادی صفحه 16 و از ترکیب بارهای 6 و 7 سازه‌های بتنی صفحه 15 استفاده نمود. توصیه ASCE7-10 برای بارهای حرارتی به این صورت بوده و دو ترکیب بار زیر را پیشنهاد می‌دهد که مشابه مبحث ششم است:

❗️ When self-straining loads are combined with dead loads as the principal action, a load factor of 1.2 may be used. However, when more than one variable load is considered and self-straining loads are considered as a companion load, the load factor may be reduced if it is unlikely that the principal and companion loads will attain their maximum values at the same time. The load factor applied to T should not be taken as less than a value of 1.0.
When using strength design:

1.2D + 1.2T + 0.5L
1.2D + 1.6L + 1.0T
برای اعمال بار حرارتی بایستی کف طبقات از حالت صلب خارج شوند. در این حالت ممکن است برخی خروجی‌های برنامه مثل مرکز جرم وجود نداشته باشد که برای این موضوع می‌توانید دیافراگم را از نوع نیمه صلب (Semi Rigid) تعریف نمایید. در صورتی که دیافراگم صلب وجود داشته باشد، اثر بارهای حرارتی از بین خواهد رفت.
برای اعمال بارهای حرارتی به اجزای قابی بعد از انتخاب آنها از مسیر Assign menu > Frame Loads > Temperature اقدام می‌شود. در بخش Uniform Temperature Change  مقدار تغییرات دما بر حسب سانتیگراد وارد شود. اگر از واحدهای انگلیسی استفاده کرده باشید باید بر حسب فارنهایت وارد کنید. قبل از این کار از مسیر Define menu > Load Patterns یک حالت بار حرارتی بایستی ساخته شود. نوع این حالت بار را می‌توان از نوع Other انتخاب کرد و بصورت دستی در ترکیب بارهای مورد نظر نام برده شده در فوق قرار داد.
در سازه‌های بتنی، تیرها تنها برای لنگر M33 طراحی می‌شوند. بنابراین بارهای حرارتی که تولید نیروی محوری در آنها می‌کنند، اثری در طراحی ندارند مگر آنکه بارهای حرارتی تولید خمش کنند. برای این مورد می‌توان تیرها را بصورت ستون تعریف نمود و آن را در حالت گزینه Reinforcement to be Designed را انتخاب کرده و در بخش Number of Longitudinal Bars Along 2-dir Face عدد 2 را وارد نمایید تا میلگردها در لبه‌های بالا و پایین قرار گیرند.
طبق مبحث نهم در صورتی که نخواهیم تحلیل حرارتی انجام دهیم، طول سازه در مناطق خشک 25 متر، در مناطق معتدل 35 متر و در مناطق مرطوب 50 متر پیشنهاد شده است. مقدار حرارتی که بایستی اعمال شود، (تغییرات دما یا دمای ثانویه منهای دمای اولیه) برابر 60 درجه سانتیگراد است. برنامه هم از شما تغییرات دما را می‌گیرد.
یکی از مراجع قدیمی که متون جدید نیز به آن رجوع می‌دهند، Federal Construction Council's Technical Report No. 65 Expansion Joints in Buildings است که در ارتباط با بارهای حرارتی مطالبی دارد. به نظر می‌رسد مقادیری که مبحث نهم برای طول حداکثر سازه پیشنهاد داده به میزان زیادی محافظه کارانه باشد. شکل زیر از گزارش نامبرده شده اخیر است که اگر مقدار تغییرات دما را 60 درجه سانتیگراد (140 درجه فارنهایت) در نظر بگیریم، برای سازه‌های فولادی در شرایط منظم و مستطیلی حداکثر طول سازه 120 متر و برای دیگر سازه‌ها و یا سازه‌های نامنظم حداکثر طول 60 متر پیشنهاد شده است که از تمام مقادیر پیشنهادی مبحث نهم بیشتر است. البته این مقادیر درج شده در شکل برای حالتی بوده که سازه دارای تنها گرمایش داخلی بوده و ستون‌ها در پای خود مفصلی هستند. اگر ساختمان دارای تهویه مطبوع باشد طول مجاز را می‌توان تا 15% افزایش داد. اگر سازه گرمایش داخلی نداشته باشد مقادیر این شکل باید 33% کاهش داده شوند. در صورتی که ستون‌ها در پای خود بصورت گیردار باشند (مثل ستون‌های بتنی) مقادیر آن باید 15% کاهش داده شوند. اگر سختی جانبی سازه در یک جهت به میزان زیادی باشد (مثل سازه‌های دارای دیوار برشی) مقادیر این شکل بایستی 25% کاهش داده شوند.
اگر مطمئن باشیم که سفتکاری سازه در یک فصل و بدون تغییرات عمده دما تمام شده و تیرها و ستون‌های داخلی تحت شرایط محیطی شدید قرار نمی‌گیرند، می‌توان تنها پوسته خارجی سازه  را برای این بارهای طراحی نمود. در غیر اینصورت کل اجزای سازه بایستی برای بارهای حرارتی طراحی شوند.
@AlirezaeiChannel
 
http://etabs-sap.ir/thermal-analysis/
  • مهندس علیرضا خویه

مجموعه ی کامل آموزش SAP2000

مهندس علیرضا خویه | | ۰ نظر
  • مهندس علیرضا خویه

آموزش مدلسازی گنبد (منحنی) در ETABS با کمک اتوکد و اکسل

نمای نهایی 

حجم:2 مگابایت

  • مهندس علیرضا خویه
دانلود رایگان فیلم آموزشی برای تحلیل پوش آور ( push over )
فایل پیوست آموزش روش بار افزون یا پوش آور میباشد که توسط خانم مهندس نرگس توفیقی دستیار دکتر محمد قاسم وتر جهت استفاده در دروس بهسازی لرزه ای سازه ها و طراحی لرزه ای سازه ها  بر اساس عملکرد و برای دانشجویان تحصیلات تکمیلی (ارشد ودکتری) در پژوهشگاه بین المللی زلزله و دانشگاه آزاد  تهیه شده است...
برای دانلود فیلم آموزشی برای تحلیل پوش آور(push_over) اینجا کلیک کنید  ...
نمونه دیگر از فیلم آموزشی برای تحلیل پوش آور(push_over) تفکیک شده که لازم است بعد از دانلود با استفاده از نرم افزار Hjsplit یکپارچه شود  ...
://drvetr.blogfa.com/
آموزش خصوصی ایتبس Etabs
  • مهندس علیرضا خویه

دانلود کتاب آموزش SAP2000

مهندس علیرضا خویه | | ۰ نظر

دانلود بخشی از کتاب آموزش SAP2000

نویسنده : علیرضا خویه

مدرس دوره های تخصصی SAP2000

طراح و محاسب سازه های خاص

دریافت فایل
عنوان: آموزش SAP2000
حجم: 2.79 مگابایت
توضیحات: دانلود آموزش SAP2000

  • مهندس علیرضا خویه

طراحی و محاسبه سوله

مهندس علیرضا خویه | | ۰ نظر
  • مدلسازی

+ سیستم متداول برای اجرای سوله قاب خمشی فولادی + مهاربندی کابلی یا فولادی است.

+ براساس دیاگرام لنگرخمشی موثر بر اعضای سازه ، ممان اینرسی مورد نیاز مقاطع تغییر میکند. بنابراین از مقاطع غیر منشوری استفاده میشود.

+ اتصال گیردار قسمت های مختلف قاب با اتصال فلنچی و به صورت پیچ و مهره ایست.

+ مدلسازی قاب های سوله در نرم افزار ممکن است به صورت دو بعدی یا سه بعدی باشد. مدلسازی سه بعدی نتایج دقیق تری خواهد داشت و برای کنترل تغییر شکل های عمود بر صفحه قاب و هم چنین طراحی مهاربندها بهتر است.

+ اتصال پای ستون به فونداسیون به صورت مفصلی است که معمولا با نبشی جان اجرا میشود.

+ اتصال تیرهای میان قاب ها و هم چنین تیرهای رابط رفترها به صورت مفصلی است.

+ به منظور تامین یکپارچگی بین قاب های مجزا تحت اثر بارهای جانبی ، در صورت نیاز کابل های ضربدری به صورت سرتاسری در پیرامون سقف اجرا میشود.

+ در مرحله مدلسازی، تفاوت چندانی میان نرم افزار SAP و ETABS وجود ندارد. هرچند برای مدلسازی سه بعدی سازه های شیبدار نرم افزار SAP مناسب تر است.

+ در سوله های ورزشی چنانچه سالن دارای سکوی تماشاچیان باشد بهتر است مجموعه سکوی تماشاچیان با درز انقطاع و بصورت جداگانه از سوله مدل شود تا جرم زیاد مجموعه سکو باعث انتقال بار زلزله به بدنه سوله نشود. همچنین تقارن عملکردی سوله از بین نرود.

+ در صورت استفاده از کابل در مدل باید دقت شود در هیچ یک از نتایج تحلیل نیروی فشاری در کابل موجود نباشد، استاده از ضریب -1 در ترکیب های زلزله برای در نظر گرفتن اثر رفت و برگشت زلزله ممکن است باعث ایجاد این خطا در نرم افزار شود. نتایج تحلیل سازه در load case ها به گونه ایست که فقط کشش در کابل موجود است. ولی ضریب -1 موجود در ترکیب بار باعث استفاده ناصحیح از نتایج صحیح تحلیل در مرحله طراحی میشود.

  • بارگذاری

+ بار مرده شامل وزن اعضای سازه ، پرلین ها و پوشش سقف

+ بار برف با در نظر گرفتن اثر شیب و توزیع نامتوازن برف

+ بار باد ، اثر رفت و برگشت باد روی ستون ها و فشار و مکش عمود بر صفحه سقف

+ بار زلزله که عمدتا از جرم دیوارهای پیرامونی و برف ناشی می شود.

+ بارهای حراراتی ، انبساط و انقباض فولاد در شرایط متفاوت دمایی نسبت به حالت معیار

+ بار جرالثقیل در سوله های صنعتی

  • تحلیل

+ در صورت استفاده از مهاربندهای کابلی در مدل تحلیل سازه باید به صورت غیرخطی باشد. برای در نظر گرفتن هم افزایی بارها در تحلیل غیرخطی لازم است ترکیب های بار به صورت load case نیز تعریف شوند.

+ تحلیل غیرخطی و با در نظر گرفتن آثار مرتبه دوم ، مخصوصا در سوله های که دهانه بزرگ دارند ، برای کنترل دقیقتر تغییر شکل ها مفید است.

+ در صورت نیاز به انجام تحلیل غیرخطی ، نرم افزار SAP نسبت به ETABS دارای موتور تحلیل قویتر و سریعتریست.

  • طراحی

+ از آنجا که مراحل طراحی تیرورق ها دارای کنترل های متعدد است که بعضا باید به صورت دستی انجام گیرد و نرم افزار همه آن ها را کنترل نمیکند. بهتر است نسبت تنش ها دارای فاصله اطمینان کافی با حد بحرانی باشند.

+ استفاده توام از جوش و پیچ در مجموعه اتصال ها، به دلیل سختی متفاوت و جذب ناهماهنگ نیرو مجاز نیست.

+ اتصال مفصلی پای ستون در هر صورت دارای درصد مشخصی گیرداری و خمش ناشی از برون محوری است که بولت ها باید برای تحمل آن به همراه برش و آپلیفت کافی باشند.

+ استفاده از مصالح سنگین (مثل آجر گری و بلوک سیمانی) برای دیوارهای نسبتا ضخیم سوله، از آنجا که در صفحه عمود بر امتداد خود سختی ندارند و در عین حال جرم زیاد آن ها تولید نیروی بار اضافی زلزله میکند، اقتصادی نیست.

+ گرچه دیوارهای آجری در امتداد طولی سوله ها سختی قابل توجهی دارند ولی در نبود تحلیل دقیق عددی یا آزمایشگاهی و همچنین مکانیسم مشخص انتقال بار به زمین ، از نظر تئوری نمی توان روی سختی آن ها در طراحی حساب کرد. گرچه در عمل کمک کننده هستند.

+ فلسفه زلزله تشدید یافته در طراحی لرزه ای جلوگیری از کمانش ستون های متصل به مهاربند تحت بار محوری زلزله است. از طرفی مقطع ستون ها غیر منشوری ست و سطح مقطه در پای ستون  کم است. که این شرایط ممکن است کنترل زلزله تشدید یافته را غیرواقعی و سخت گیرانه کند. گرچه اشاره مشخصی در مراجع و آیین نامه ها به این موضوع نشده.

+ شیوه اتصال وال پست ها به رفتر (چنانچه وال پست ها در فایل مدل نشده باشد) باید به گونه ای باشد که بار ثقلی و جانبی را از قاب سوله جذب نکند. تا اعتبار نتایج تحلیل حفظ شده و مقطع وال پست صرفا برای باد و وزن دیوار متصل طراحی شود. اتصال به وسیله پیچ و سوراخ لوبیایی بلند میتواند مناسب باشد.


مستندات مرتبط:

+ ضوابط طرح و محاسبه ساختمان های صنعتی فولادی

+ نمونه دفترچه محاسبات نسبتا کامل برای طراحی سوله صنعتی



  • مهندس علیرضا خویه

بارگذاری سوله

مهندس علیرضا خویه | | ۰ نظر

بارگذاری سوله

ترکیبات بارگذاری دخیل در طراحی سوله (در سوله پرداز) به شرح زیر هستند:
  • بارمرده سوله
  • بار برف سوله
  • بار باد سوله
  • بار زلزله سوله
  • بارهای خاص در سوله
  • بارهای جرثقیل در سوله

نکاتی پیرامون طراحی سوله
سوله‌های سنگین طراحی شده یا ساخته شده:
۱. گاهی اوقات سازندگان علاقه‌مند هستند به دلایلی همچون کاهش دور ریزورق، سود بیشتر و یا احساس نا امنی از سوله‌هایی که می‌خواهند بسازند مقاطع را نسبت به طرح ارائه شده قوی تر بسازند. مثلاً ارتفاع جان درپای ستون و تعداد بولتها را افزایش می‌دهند ویا عرض بالها را زیاد تر می‌کنند و یا طول ماهیچه تیر را زیادتر می‌گیرند. در این میان اگرچه کل طرح قوی تر شده اما باید به نکاتی هم توجه کرد:
- با توجه به اینکه میزان جذب نیرو در قاب خمشی بر اساس ماتریس سختی بوده و ممکن است با قوی تر شدن یک قسمت، نیروی بیشتری هم جذب شود، لازم است بر این اساس کنترل‌هایی صورت گیرد تا افزایش نیروی داخلی عضو نسبت به نیروی دیده شده در طراحی خطرساز نباشد. مثلاً جذب لنگر بیشتر در انتهای تیر، نیازمند پیچ‌های بزرگتری دراتصال تیر به ستون می‌تواند باشد. با جوش دادن و تقویت بیش از حد پای ستون با استیفنرهای متعدد می‌توان باعث جذب لنگر در یک اتصالی که مفصلی فرض شده گردید و موجب گسیختگی در پای ستون یا ورق کف ستون یا بولتها و یا واژگونی فونداسیون شد.
پیش بینی سوله برای آینده:
۱. اصولاً تجربه نشان داده است اضافه شدن یک سوله (دوقلو یا بچه سوله و...) به سوله موجود یا در حال طرح معمولاً نه تنها باری به آن اضافه نمی‌کند بلکه با توجه به مهار آن وایجاد لنگرهای برعکس در ستون آن هم از نظر تنش و هم از نظر جابجایی وضعیت آن را بهتر می‌کند. اما در مورد سوله‌هایی که قرار است به صورت دوقلو یا چند قلو یا با یک بچه سوله طراحی شوند، اما فعلاً کارفرما قصد دارد که یکی از آن‌ها را بسازد و بعدها در صورت تأمین مالی بخش دیگر را بسازد، قضیه فرق می‌کند و از آنجا که در چند سالی که این سوله به صورت تنها استفاده می‌شود، چنانچه مورد فشار بار باد ماکزیمم یا برف که برای آن طرح شده قرار گیرد، ممکن است عملکرد دیده شده در طرح را نداشته و تخریب گردد.
۲. در این موارد اولاً بایستی سوله‌ای که فقط قرار است ساخته شود را نیز جداگانه مدل نمود و آن را مورد بررسی و ارزیابی قرار دارد. چنانچه تنش‌های این سوله به تنهایی بیشتر از حد مجاز است لازم است آن را تقویت نمود، اما اگر صرفاً در حالت تنها جابجایی آن قدری از حد مجاز فراتر رود به نظر می‌رسد می‌توان تا حدودی خاص که باید به تأیید دستگاه‌های زیربط برسد و این میزان بستگی به تعهد کارفرما در مورد ساخت قسمت نهایی سوله در مدت زمان محدود دارد می‌توان این جابجایی را نادیده گرفت.
تحلیل دو بعدی یا سه بعدی:
۱. آقای دکتر ازهری روش دو بعدی را ترجیح داده‌اند.
۲. آقای طاحونی تحلیل با تحلیل سه بعدی موافق تر هستند.
۳. تحلیل سوله به صورت سه بعدی پیچیده می‌شود و به مهاربندهای سقف بستگی پیدا می‌کند و حتی اعضای فشاری هم نیرو می‌گیرند.
۴. برای کنترل جابجایی سوله و استفاده از ظرفیت به هم پیوستگی قابها نیاز به مدل سه بعدی هست.
۵. در مدل سه بعدی از نصف بودن چشمه باربر قابهای اول و آخر نسبت به سایر قابها و وجود ستونهای باد و تیر نعل درگاه و کلاف و حتی دیوار و گاهی کوچکتر بودن فاصله دو قاب اول و دوم برای کاهش جابجایی می‌توان استفاده کرد.
۶. می‌توان از بادبند در قابهای ابتدا و انتها برای مهار بیشتر آنها استفاده نمود.
۷. باید فونداسیون‌های این دو قاب برای نیروهای بیشتر باد طراحی شوند.
۸. با توجه به کاهش جابجایی سوله و کاهش اثر −p ممکن است تنشهای سوله از حالت دوبعدی کمتر گردند. اما با توجه به اینکه ممکن است تحلیل خیلی دقیق نباشد و یا در عمل خوب کار نکنند بهتر است برای کاهش تنشها از این روش استفاده نگردد. بلکه صرفاً به خاطر جابجایی از این روش استفاده گردد که خطر خاصی ایجاد نشود.
۹. بهتر است در حالت استفاده از تحلیل سه بعدی برای کنترل جابجایی سوله در قاب دو بعدی جابجایی سوله به عددی مانند دو برابر جابجایی مجاز سوله محدود گردد تا از عملکرد سوله اطمینان حاصل شود.
۱۰. در حالت تحلیل دو بعدی تنش‌های خارج صفحه مانند پیچش ناشی از نیروی طولی جرثقیل یا خمش‌های حول محور ضعیف تیر و ستونها دیده نمی‌شود.
۱۱. در هر حال تحلیل سه بعدی واقعی تر است و در واقع علاوه بر بادبندهای سقف به دلیل اتصال Zها به یکدیگر و پوشش سقف توسط ورق موجدار، اصولاً قابهای سوله به هم مرتبط هستند و با هم کار می‌کنند.
ترکیبات بار
برخی افراد قبل از بارگذاری سوله مقایسه‌ای بین برش پایه ناشی از زلزله و باد می‌کنند و فقط نیرویی که برش پایه بیشتری دارد را به سازه اعمال می‌کنند. (معمولاً بار باد) در حالیکه اصولاً این دو تفاوتهای زیادی هم دارند، از جمله:
الف - بار زلزله صرفاً به مراکز جرم به صورت نقطه‌ای وارد می‌شود و به هر کجا که جرم وجود دارد. اما بار باد به هر کجا که پوششی وجود دارد اعمال می‌شود و توزیع آن به شکل خطی است.
ب - اصولاً توزیع بار زلزله در سوله‌های متقارن، در دو طرف مشابه است. مثلاً در تیرها و ستونهای دو طرف اما در مورد بار باد در یک طرف، فشار و در یک طرف مکش داریم و در ستون سقف شیبدار مکش‌هایی هم به سمت بالا داریم که عکس العمل‌های ویژه‌ای را در اعضای قاب و تکیه گاه‌ها حاصل می‌کند.
ج - در ترکیبات بارگذاری ترکیبی مانند 0.5WL +DL+SL داریم که در مقایسه با ترکیب بار EQ +DL+SL (که بار زلزله بدون ضریب است) قابل مقایسه نیستند.
اما در مورد ترکیب بار EQ +DL+SL به نظر می‌رسد قدری دست بالا باشد. چطور است که آیین‌نامه همزمانی بار برف ۵۰ ساله و باد ۵۰ساله را ناچیز دانسته ولی همزمانی بار برف و زلزله را محتمل می‌داند. در حالیکه باد خیلی محتمل تر از زلزله است: آیین‌نامه بارگذاری ایران سال ۸۵ ص۸۳ –بند ۶-۸-۱
(EیاW) +D
(E یا W) 0.5S)+یا+(Lr L+D
(E یا W0.5) S)+یا+(Lr L+D
آیین‌نامه فولاد ایران ویرایش جدید:
[(E یا W (L+D]0.75 (E یا W (D]0.75
جالب است که در اینجا ضریب ۰٫۵ برای همزمانی بار باد و برف هم منظور شده است و ثانیاً ضریب ۱- به عنوان بار باد منظور گشته در صورتی که این ضریب در ترکیبات بار وارد شود مسائل جالبی به وجود می‌آید. از جمله اینکه مکش‌های وارد بر سقف به صورت فشار درآمده و هم جهت با بار برف و بار مرده می‌شوند و مکش ناشی از بار باد (با ضریب شکل مربوط به خودش) به صورت فشار درآمده و فشار وارد بر سازه به شکل مکش در می‌آید. البته در ویرایش قبلی آیین‌نامه فولاد این اشتباهات وجود نداشته است.
اثرات تغییرات LTB وK تیر و ستون بر تنش مجاز آنها:
اصولاً هم تیر و هم ستون در سوله از جنس تیر ستون هستند و در هر دوی آنها عموماً ویژگی تیر غالب است تا ستون به دلیل سبک بودن بارها، عمده تنش ایجاد شده در اعضا به شکل خمشی است نه فشاری. مگر در مواردی که ستون دارای جرثقیل سنگینی باشد که درصدی از تنش هم ناشی از نیروی محوری خواهد شد؛ لذا اصولاً بحث بیش از حد دربارهٔ K خیلی در سوله‌ها مصداق پیدا نمی‌کند و اصولاً عددی بین ۱٫۳ تا ۲ را می‌توان به عنوان K ستون به کار برد و تأثیر چندانی بر ابعاد سازه نخواهد گذاشت. اما در مورد گزینه LTB نرم‌افزار از این عدد در دو جا استفاده می‌کند. اولاً عدد LTB کوچکتر از ۱ به این معنی است که طول مهار نشده ستون کاهش داده می‌شود. مثلاً اگر LTB ستون ۰٫۵ تعریف شود و K آن ۱٫۳:
ضریب لاغری:
یعنی بر شکل کمانش عضو و معادله کمانش آن تأثیر می گذارد و از آنجا بر تنش مجاز فشاری. تا این‌جای قضیه چندان دور از واقعیت نیست، اما LTB به عنوان فاصله مهارهای جانبی بال فشاری هم برای برنامه شناخته می‌شود و از آنجا ممکن است در تعیین تنش مجاز خمشی تأثیر فراوانی داشته باشد. در حالیکه در بسیاری حالات قوطی به کار رفته در دل ستون یا در وسط جان اجرا می‌شود و یا چسبیده به بال کششی و استفاده از آن به عنوان مهار جانبی بال فشاری در محاسبات صحیح نیست. البته راه حل ساده پیشنهاد شده در این رابط جوش دادن یک ورق تقویت جان بین بال فشاری و قوطی مهاربند می‌باشد.
فونداسیون‌های گیردار:
باید کف ستونها تحت همه حالات بار طراحی شوند (و بولتها) چون ممکن است در یک حالت e بزرگ باشد ولی نیروها کم باشند و در حالتی دیگر e متوسط باشد ولی کشش یا فشار در ستون زیاد باشد.
همچنین در صورتی که بخواهیم از فونداسیون منفرد استفاده کنیم، ناپایدار است. چرا که نهایت e که می‌تواند از بزرگتر باشد تا قسمتی از پی تحت کشش بیفتد است و از آن به بعد پی ناپایدار می‌شود و همان‌طور که می‌دانیم همیشه در حالت گیردار e بزرگتر از است. چون معمولاً لنگر زیادی در پای ستون وجود دارد و نیروی محوری کمی بنابراین e= همیشه عدد بزرگی است.
ضمناً در صورت استفاده از فونداسیون نواری روی پیچش شناژهای رابط طولی نمی‌توان حساب کرد چون بار باد همزمان به همه قابها وارد می‌شود (همینطور سایر بارها) و چنانچه دهانه سوله بزرگ باشد فونداسیون‌های نواری عرضی هم شاید خیلی کارساز نباشد. چون اولاً باید آنها را طراحی نمود (آرماتور و بلندشدگی آنها را) و ثانیاً تغییر شکل آنها باید بررسی شود که از حد مجاز بیشتر نباشد. ضمناً همان تغییر شکل (چرخش فونداسیون) هر چقدر هم که ناچیز باشد، باید اثر آن را برروی جابجایی کنیم سوله بررسی کرد. ضمناً معمولاً وصل کردن فونداسیون به صورت نواری بسیار پرهزینه است.
گیرداری فونداسیون:
۱. اصولاً هیچ دیتایلی برای فونداسیون صرفاً مفصلی و گیردار نیست.
۲. چگونگی اعمال گیرداری نسبی در فایل و دتایل اجرایی آن نیاز به تحقیق دارد مثلاً نمی‌توان گفت چه اتصالی ۲۵٪گیرداری دارد. اما در کل می‌توان گفت هر اتصالی حداقل ۱۰٪ گیرداری را دارد که از ظرفیت آن می‌توان برای کنترل جابجایی سوله استفاده کرد. اما باید بولت‌ها و فونداسیون را هم بر آن اساس طراحی نمود.
۳. گاهی گیرداری نسبی درمورد باری مثل برف تعریف می‌شود ولی در مورد باری مثل باد نسبت‌های بدست آمده بین لنگر جذب شده در حالت گیردار و نیمه گیردار متفاوت است.
اثر دیوارهای جانبی سوله:
۱. در واقعیت دیوارها مهارکننده جانبی ستون‌های سوله و نگهدارنده سوله در مقابل باد هستند. هرچند در تئوری ما فرض می‌کنیم که بار باد از دیوار به سوله منتقل می‌شود. اما در واقع دیوار خود به تنهایی بار باد را تحمل می‌کند و آن را به زمین منتقل می‌کند و اصولاً وجود دیوار در اطراف سوله به کاهش جابجایی آن کمک می‌کند.
۲. از آنجا که با افزایش ارتفاع دیوار از ۵–۶ متر هم سقوط آجر و مصالح در هنگام زلزله و تخریب دیوار به پایین وجود دارد و هم وزن سازه افزایش یافته و باعث می‌شود سوله سنگین تر گردد به نظر می‌رسد بهتر است از کاربرد آجر و دیوار در ارتفاع بیشتر خودداری شود و به جای آن از مصالح سبک و پوشش‌های نوین استفاده نمود.
لزوم کاربرد شناژهای رابط در عرض سوله:
اگرچه مورد خاصی در مورد اتصال عرضی فونداسیون‌های منفرد سوله درعرض در آیین‌نامه‌ها ذکر نشده اما به برخی از محاسن که در ذیل می‌آید مهندسان را ترغیب می‌کند که به صورت دو در میان یا سه در میان از این کمربندها استفاده کنند:
الف- این کلافها به عنوان مهاری مطمئن برای آرماتور و قالب بسته شده قبل از بتن ریزی لحاظ می‌شوند و از تکان خوردن بیش از حد آرماتورها جلوگیری می‌کنند.
ب- در هنگام زلزله باعث حفظ انسجام سیستم پی و سوله و جلوگیری از رانش یکی از فونداسیون‌های به تنهایی می‌گردند.
ج- با توجه به وجود درصدی از گیرداری در پای ستون و تغییرشکلی که ممکن است در اثر آن در پی حاصل شود، این شناژها این تغییرشکل و چرخش را محدود می‌کنند.
کنترل کمانش‌های موضعی:
۱. طبق آیین‌نامه فولاد ایران و سایرمراجع بین‌المللی لازم است علاوه بر کنترل تنش در اعضای سازه‌ای فولادی که از تیر ورق ساخته می‌شوند. نسبت‌های عرض به ضخامت نیز برای بال و جان اعضا از حدود مشخصی تجاوز نکند تا از کمانش موضعی جلوگیری گردد.
۲. به نظر می‌رسد با کاهش تنش موجود به مجاز اعضا می‌توان این حالت را نادیده گرفت که جای بحث دارد. البته این موضوع در آیین‌نامه فولاد ایران آمده است. می‌توان با یک مثال قدری در این مورد توضیح داد:
فرض کنیم نسبت تنش در یک ستون با ابعاد جان۰٫۶×۹۰ و ابعاد بال ۱×۲۰ کمتر از یک شده است. اما به دلایلی طراح یا سازنده مایل است از عرض بال ۲۵ به جای ۲۰ استفاده کند؛ که به نظر می‌رسد با وجودی که از نظر کمانش موضعی محدودیت وجود دارد. اما چون از ورق قوی تری استفاده شده و در کل تنش موجود به مجاز در آن عضو کمتر می‌شود، مانعی نداشته باشد. اما اگر از ابتدا طراح نسبت تنش کوچکتر از ۱ را با مقطع دارای بال ۱×۲۵ بدست آورد، این طراحی اشتباه است.
۳. در ویرایش جدید آیین‌نامه فولاد ایران (مبحث دهم- جدول ۱۰-۱-۲-۱ ص۲۵) حداکثر نسبت پهنای آزاد به ضخامت برای جان ≤ قطعات به صورت ذکر شده که ضخامت‌های زیادی را برای جان قطعات نتیجه می‌دهد و به نظر می‌رسد اشتباه چاپی باشد. چرا که این محدودیت که به عنوان مرز مقاطع غیر فشرده و مقاطع با اجزای لاغر معرفی شده در خود این کتاب در چند جای دیگر نقض شده و به صورت ذکر گردیده است. از آن جمله در صفحات۵۲ و۶۷ و۶۸
همچنین در ویرایش قبلی مبحث ۱۰ از رابطه استفاده شده است. ص۱۹
مجاورت ستونهای باد با قوطی‌های سقف:
۱. هدف انتقال بار باد به زمین است .(به کمک رفتار خرپایی)
۲. چشمه باربر قاب اول و آخر نصف سایر قاب هاست.
جرثقیل:
۱. بایستی نوع پل جرثقیل (تک پل یا دو پل) در ابتدا مشخص گردد. چون این گزینه به سه عامل مربوط می‌شود: یکی فاصله چرخ‌های راهبر پل، دوم وزن پل و سوم محل حرکت ارابه که در حالت تک پل زیر پل و در حالت دو پل روی آنها می‌باشد.
۲. لازم است پل بر اساس تنش مجاز، اثر خستگی، خیز (و پیش خیز لازم) و کمانش موضعی طرح شود.
۳. برای طراحی کامل و دقیق یک سوله که دارای جرثقیل است، بایستی وزن پلها، وزن ارابه، فاصله چرخهای ارابه و راهبر پل معلوم باشد و بایستی این اعداد در نقشه‌ها ذکر شود تا از مسائل و خطرات بالقوه آتی جلوگیری گردد. مثلاً اگر سازنده وزن پل بیشتری را ارائه کند یا فاصله چرخ‌های راهبر را کمتر کند، خطرناک خواهد بود.
۴. بهتر است خیز پل و حماله براساس رابط کنترل شود یا
باید توجه نمود که نوع نشیمن جرثقیل نیز خیلی مهم است. اگرچه استفاده از نشیمن کربل که به ستون جوش داده می‌شود اصولاً مطلوب تر است (چون عضو بالای آن ضعیف نمی‌شود)اما در مواردی که نیروی زیادی به نشیمن جرثقیل وارد می‌شود بهتر است از ستون‌های لبه دار استفاده کرد تا خطر شکستگی کربل یا جوش آن به ستون برطرف گردد.
تغییر ابعاد فایل و تنش اعضا در ورژن‌های مختلف برنامه
یکی از دلایل تغییرات تنش اعضا در انتقال فایل SAP از ورژنی به ورژن دیگر تغییر فاصله نقاط خروجی یا نقاط check تنش است. (output stations) که در ورژنهای پایینتر از ۹ فقط توسط کاربر نسبت داده می‌شد، اما در ورژن‌های جدید علاوه بر نقاط قبلی در نقاط تغییر شیب مقاطع و اتصال اعضای دیگر به یک عضو و ورود بارهای متمرکز نیز به صورت پیش فرض برنامه کنترل تنش را انجام می‌دهد که ممکن است در همان نقطه عضو ضعیف باشد: سوله
در برخی از نسخه‌های SAP برنامه به طور اتوماتیک در مورد اعضایی که ترکیبات بار برای آنها شامل باد یا زلزله می‌شود تنش‌های مجاز را ۳۳٪ افزایش می‌دهد، اما برخی از نسخه این کار را نمی‌کنند و در کل نسبت تنش بیشتری را نشان می‌دهند. نویسنده:امید خالدان
  • مهندس علیرضا خویه

چه سازه های در SAP2000 قابل تحلیل و یا طراحی می باشد؟
· ساختمان های فولادی و بتنی متداول,
· خرپا ها، پایپرک ,
· سوله و سازه های صنعتی,
· انواع جرثقیل,
· انواع دال ها و پوسته های بتنی,
· سازه های سرد نورد فولادی,
· پل ها و سازه های تحت بار متحرک,
· مخازن فولادی و بتنی هوایی و مدفون,
· سازه های فضا کار,
· دکل های مخابراتی خود ایستا و مهاری,
· انواع پایه ها و نگهدارنده های تابلو,
· سازه های دارای جداساز لرزه ای,
· سازه های دارای میراگر ,
· دیوار حایل,
· و...

  • مهندس علیرضا خویه