مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۷۷۶ مطلب توسط «مهندس علیرضا خویه» ثبت شده است

تیر لانه زنبوری

مهندس علیرضا خویه | | ۰ نظر

همه چیز در مورد تیرهای لانه زنبوری :

دلیل نامگذاری تیرهای لانه زنبوری، شکل گیری این تیرها پس از عملیات ( بریدن و دوباره جوش دادن ) و تکمیل پروفیل است . اینگونه تیرها در طول خود دارای حفره های توخالی (در جان) هستند که به لانه زنبور شبیه است ؛ به همین سبب به اینگونه تیرها لانه زنبوری می گویند.

مشخصات مقاطع لانه زنبوری CPE18 CPE CPE20

هدف از ساخت تیرهای لانه زنبوری :

هدف این است که تیر بتواند ممان خمشی بیشتری را با خیز (تغییر شکل ) نسبتا کم، همچنین وزن کمتر در مقایسه با تیر نورد شده مشابه تحمل کند ؛ برای مثال، با مراجعه به جدول تیرآهن ارتفاع پروفیل IPE-18 را که 18 سانتیمتر ارتفاع دارد، می توان تا 27 سانتیمتر افزایش داد.

سازه فلزی از تیر ها و ستون ها و المان های باربر جانبی مانند مهاربند ها تشکیل می شودکه ستون ها اغلب بار فشاری(بسته به نوع سیستم سازه ای هم دارد) و تیرها بارهای فشاری و خمشی را تحمل میکنند که در تیرها بحث خمش اهمیت بسزایی دارد و جان تیر فولادی وظیفه خمش را بر عهده دارد که با افزایش ارتفاع جان در نتیجه افزایش تحمل خمش را در تیر داریم که در تیرهای زنبوری این خواسته ما با افزایش ارتفاع جان تیر براورده میشود و تیر با وزن کمتر نسبت به ممان اینرسی تیری با همان مقطع عمل میکند و بار وارده را تحمل میکند

تیر لانه زنبوری

از سوی دیگر بهینه‌ترین وضعیت در طراحی سازه‌ها، اقتصادی بودن آن‌ها می‌باشد که در تیرهای لانه زنبوری به دلیل آنکه مقطع هر تیر به صورت زاویه دار (زیگ‌زاگ) توسط دستگاه برش بریده می‌شود و سپس با جابه‌جایی دو قسمت آن نسبت به هم، تیر به صورت لانه زنبوری در خواهدآمد و صرفه جویی نسبی در مصرف فولاد صورت خواهد گرفت.

از لحاظ تاسیسات ساختمان نیز اینگونه تیرها مورد استقبال قرار می‌گیرند چراکه که می‌توان از فضاهای خالی در جان تیر برای عبور لوله‌های تاسیسات و یا کابل‌های برق استفاده نمود و این موضوع شاید یکی از نقاط قوت منحصر به فرد اینگونه تیرهاست. ملاحظه می‌شود که تیرهای لانه زنبوری با توجه به مطالب ذکر شده به میزان چشمگیری از ارتفاع سقف می‌کاهند که به ویژه در مواقعی که طرح‌های معماری محدودیت زیادی را در ساختمان به صورت اعم و در ناحیه سقف به صورت اخص به طراحان سازه تحمیل می‌کنند و به هیچ عنوان افزایش ضخامت سقف ممکن و میسر نمی‌باشد، تیرهای لانه زنبوری بهتر از سایر مقاطع نورد شده نقش انتقال بار را به سایر عناصر بازی خواهند کرد.

حتی در مواردی که تیر با ارتفاع متغییر مورد نیاز است مانند بعضی از سازه‌های صنعتی و یا تیرهای مورد استفاده در تیرریزی بام، با تغییر برش تیر، تیر مورد نظر را بسیار ساده و ارزان می‌توان آماده نمود که این کار تنها با برش مورب زیگ‌زاگ‌ها در جان تیر ممکن خواهد بود. مزایای مذکور باعث ترغیب طراحان در استفاده از تیرهای لانه زنبوری می‌شود و به عنوان گزینه مطلوبی مورد استفاده همه جانبه قرار می‌گیرد.

استفاده از تیرهای سوراخدار (زنبوری) در ایران و علی الخصوص در شهرستان ها از مقبولیت خاصی برخوردار است.بیشتر مهندسان استفاده از این تیرها را این طور توجیه میکنند که با افزایش ارتفاع تیر ممان اینرسی زیاد میشود و مقطع سبکتری بدست می آید و یا اینکه هنگام بتن ریزی سوراخهای تیر با بتن پر میشود و تیر مقاوم تری بدست می آید و همچنین وزن اسکلت پایین می آید.

تیرهای زنبوری را به دلایل زیر میتوان رد کرد :

1- جوشکاری سرتاسری تیر برای یکپارچه کردن تیر

2- پرنشدن برخی از سوراخها هنگام بتن ریزی

3- جوشکاری ورقهای ابتدا و انتهای تیر برای جلوگیری از برش

تیر لانه زنبوری

دیده میشود که جوشکاری در تیر زنبوری بیش از تیرهای معمولی است.

جوشکاری زیاد برروی فولاد باعث از دست رفتن خواص فولاد و مقاومت آن میشود چون در هر بار جوشکاری نزدیک به 4000 درجه سلسیوس دما به آن ناحیه وارد میشود و بهتر است جوشکاری را به حداقل برسانیم و یا از جوشهای کارخانه استفاده کرد.

محاسن و معایب تیر لانه زنبوری :

باتوجه به مثال گفته شده در بالا با تبدیل تیرآهن معمولی به تیرآهن لانه زنبوری،

اولا : مدول مقطع و ممان انرسی مقطع تیر افزایش می یابد .

ثانیا : مقاومت خمشی تیر نیز افزوده می گردد . در نتیجه ف تیری حاصل می شود با ارتفاع بیشتر، قویتر و هم وزن تیر اصلی .

ثالثا : با کم شدن وزن مصالح و سبک بودن تیر، از نظر اقتصادی مقرون به صرفه تر خواهد بود. رابعا : از فضاهای ایجاد شده (حفره ها) در جان تیر می توان لوله های تاسیساتی و برق را عبور داد. در ساختن تیر لانه زنبوری که منجر به افزایش ارتفاع تیر می شود، باید استاندارد کاملا رعایت گردد ؛ در غیر اینصورت، خطر خراب شدن تیر زیر بار وارد شده حتمی است.

از جمله معایب تیر لانه زنبوری، وجود حفرهای آن است که می تواند تنشهای برشی را در محل تکیه گاهها پل به شتون یا اتصال تیراهن تودلی (تیر فرعی) به پل لانه زنبوری تحمل کند ؛ بنابراین، برای رفع این عیب، اقدام به پر کردن بعضی حفره ها با ورق فلزی و جوش می کنند تا اتصال بعدی پل به ستون یا تیر فرعی به پل به درستی انجام شود. تیر لانه زنبوری در ساختمان اسکلت فلزی می تواند به صورت پل فقط در یک دهانه یا به صورت پل ممتد به کار رود . برای ساختن تیر لانه زنبوری دو شیوه موجود است :

الف ) شیوه برش پانیر

ب)شیوه برش لتیسکا

ضعف بزرگ تیرهای لانه زنبوری در پیچش جانبی است که از این تیرها نباید در دهانه های مهاربندی استفاده شود

استفاده از تیرهای لانه زنبوری در اعضای باربر جانبی مجاز نیست


از این نوع تیر فقط در موارد زیر می توان استفاده کرد:
۱.تیرهای فرعی مثل تیر فرعی سقف کامپوزیت
۲.تیر های مفصلی در قاب های ساده
توجه شود در دهانه ای که مهاربند قرار دارد استفاده از این نوع تیر ممنوع است
۳.تیر های نیم طبقه که به صورت مفصلی هستند
۴.تیرهای اطراف بازشو ها یا داکت ها که فقط نقش ثقلی دارند

روشهای مختلف برش تیر آهن :

1- برش به روش کوپال : با استفاده از دستگاه قطع کن سنگین که به گیوتین مخصوص مجهز است، تیرآهن به شکل سرد در امتداد خط منکسر قطع می شود.
2- برش به روش برنول : برش در این حالت به صورت گرم انجام می گیرد ؛ به این صورت که کارگر ماهر برش را با شعله بنفش رنگ قوی حاصل از گاز استیلن و اکسیژن، به وسیله لوله برنول، انجام می دهد.
بریدن تیرهای سبک به وسیله ماشینهای برش اکسیژن شابلن دار نسبتا ساده است . در ایران تیرهای لانه زنبوری را بیشتر با دست تهیه می کنند.

روشهای ساختن تیر لانه زنبوری و تقویت آن :

روش تهیه تیرهای لانه زنبوری از این قرار است که ابتدا در روی جان تیرآهن نورد شده با استفاده از اگو که بصورت 5. شش ضلعی از ورق آهن سفید نیم میلیمتری (شابلن) با توجه به استاندارد ساخته شده خط می گردد ؛ سپس تیرآهن را روی یک شاسی افقی با زدن تک خال جوش در نقاط مختلف برای جلوگیری از تاب برداشتن قرار می دهند . آن گاه با استفاده از دستگاه برش (برنول) در امتداد خط منکسر اقدام به برش می کنند تا پروفیل به دو قسمت بالا و پایین تقسیم شود. حال اگر قسمت بالا را به اندازه یک دندانه جابجا کنیم و دندانه های دو قسمت با و پایین را به دقت مقابل هم قرار دهیم و از دو طرف کارگر ماهر آنرا جوشکاری کند با استفاده از جوش قوسی نیمه اتوماتیک برای اتصال دو نیمه بریده شده ؛ یک جوش خوب، بی عیب ؛ سریع و مقرون به صرفه خواهد بود . همان طور که در مطالب قبلی نیز گفتم، تیر ساخته شده در محل تکیه گاهها با توجه به حفره های خالی آن در مقابل تنشهای برشی ضعیف می شود . برای جبران این نقیصه، با توجه به منحنی نیروی برشی نیز به پر کردن حفره ها با ورقهای تقویتی اقدام می کنیم.

ساخت تیر لانه زنبوری

لازم به ذکر است که حداقل باید یک حفره با ورق در تکیه گاه به وسیله جوش کامل پر شود. در پایان یادآور می شویم که یک نوع دیگر از پروفیلهای لانه زنبوری را پس از بریدن قطعات بالا و پایین ورق واسطه اضافه می کنند که این ورق ورق واسطه بین دندانه ها جوش می شود . در نتیجه، تیر حاصل به مراتب قویتر از تیری است که بدون ورق واسطه ساخته می شود .

تقویت تیرهای لانه زنبوری به کمک رفتار مرکب بتن و فولاد

در تیرهای لانه زنبوری علاوه بر تنشهای خمشی اصلی در محل حلقه ها تنشهای خمشی ثانویه حاصل از برش در مقطع ایجاد میگردد که گاهی این تنش از تنشهای خمشی اصلی در تیر بزرگترند. این تنشها از کارایی تیر می کاهند و برای مقابله با آنها باید حلقه های کناری را با ورق پر کرد خصوصا هنگامی که از این نوع تیرها بصورت یکسره استفاده می شود در محل تکیه گاهها که هم نیروی برشی و هم لنگر خمشی زیاد می باشد تنشهای خمشی بشدت افزایش میابد و نیاز به تقویت تیر در این محلها می باشد که از لحاظ اقتصادی قابل توجیه نمی باشد.

نحوه ی طراحی تیر لانه زنبوری 

دریافت
حجم: 726 کیلوبایت
توضیحات: طراحی تیر لانه زنبوری

 

  • مهندس علیرضا خویه

جدول وزن آهن آلات

با دانستن مساحت و چگالی هر جسمی حدود وزن آن جسم قابل محاسبه است.

برای راحتی درک این موضوع لازم می دانم تا چگالی چند کالای فلزی مهم را باز گو کنم :

چگالی آهن =۷/۸۶ (که بهتر است ۸ در نظر گرفته شود)

چگالی استیل = ۷/۸۴ (که باز هم پیشنهاد می کنم در محاسبات ۸ در نظر بگیرید)

چگالی آلومینیوم = ۲/۷

چگالی سایر فلزات مانند گالوانیزه ، روغنی ، سیاه ، آجدار و … نیز همان چگالی آهن است که توصیه می کنم ۸ در نظر گرفته شود.

خوب تا اینجا چگالی برخی از فلزات پرکاربرد را ذکر کردیم و برای تست فرمول وزن یک برگ ورق استیل ۳ میل با ابعاد۲ متر در ۱ متر را به شیوه زیر حساب می کنیم :

وزن ورق(کیلوگرم) = طول ورق(متر)*عرض ورق(متر)*ضخامت ورق(میلی متر)*چگالی ورق

وزن ورق ۳میل ۱*۲ استیل = ۲*۱*۳*۸= ۴۸ کیلوگرم

یعنی حدود وزن یک برگ ورق استیل۳ میل ۴۸ کیلوگرم می باشد که با وزن واقعی آن (وزن باسکول) تقریبا یکی است.

از همین روش برای محاسبه وزن قوطی های پروفیل ، محاسبه وزن نبشی ، محاسبه وزن ناودانی ، محاسبه وزن تیرآهن و میلگرد و …. استفاده کرد .


ناودانی (UNP) ١٢ متر اروپا
نمره ٦/٥➖وزن ٨٥کیلو
نمره ٨ ➖وزن١٠٧کیلو
نمره. ١٠➖وزن ١٢٧کیلو
نمره. ١٢➖وزن١٦٠کیلو
نمره. ١٤➖وزن١٩٢کیلو
نمره. ١٦➖وزن٢٢٥کیلو
نمره. ١٨➖وزن٢٦٤کیلو
نمره. ٢٠➖وزن٣٠٣کیلو
نمره. ٢٢➖وزن٣٥٢کیلو
نمره ٢٤➖وزن٤٠٠کیلو
نمره ٢٦➖وزن٤٥٥کیلو
نمره. ٢٨➖وزن٥٠٠کیلو
نمره. ٣٠➖وزن٥٥٥کیلو
نمره. ٣٢➖وزن٧١٥کیلو
نمره. ٣٥➖وزن٧٣٠کیلو
نمره ٣٨➖وزن٧٥٧کیلو
نمره ٤٠➖وزن٨٦٠کیلو

کلیه وزن ها طبق جدول اشتال بوده و بارها همگی ١٢ متر می باشد



جدول وزنی میلگردها

میلگرد 8 = شاخه 12 متری 6 کیلوگرم
میلگرد 10 = شا خه 12 متردی 7.8 کیلوگرم
میلگرد 12 = شاخه 12 متری 11 کیلوگرم
میلگرد 14 = شاخه 12 متری 15 کیلوگرم
میلگرد 16 = شاخه 12 متری 20 کیلوگرم
میلگرد 18 = شاخه 12 متری 25 کیلوگرم
میلگرد 20 = شاخه 12 متری 30 کیلوگرم
میلگرد 22 = شاخه 12 متری 37 کیلوگرم
میلگرد 25 = شاخه 12 متری 47 کیلوگرم
میلگرد 28 = شاخه 12 متری 58 کیلوگرم
میلگرد 30 = شاخه 12 متری 66 کیلوگرم
میلگرد 32 = شاخه 12 متری 75 کیلوگرم
میلگرد 34 = شاخه 12 متری 85 کیلوگرم
میلگرد 36 = شاخه 12 متری 95 کیلوگرم
میلگرد 38 = شاخه 12 متری 106 کیلوگرم
میلگرد 40 = شاخه 12 متری 118 کیلوگرم


تیرآهن مهمترین نوع پروفیل‌های ساختمانی است که به سه صورت معمولی IPE (استاندارد اروپا و ایران)، INP (استاندارد چین و روسیه) و IPB (بال پهن) وجود دارد.
تیرآهن معمولی به ارتفاع ۸۰ تا ۶۰۰ میلیمتر عرضه می‌شود و مورد استفاده آن در ستون‌ها، خرپاها، نعل درگاه‌ها، بیم‌ها در پوشش سقف‌ها و پل‌های لانه زنبوری می‌باشد.

تفاوت تیرآهن های موجود در بازار
تیرآهن IPE
تیرآهن معمولی و استاندارد I شکل که در بازار ایران وجود دارد. این تیرآهن طبق استاندارد اروپا تولید شده‌اند و ضخامت بال آنها ثابت می‌باشد. (I Profile Eroeenne)

جدول وزن تیرآهن

جدول وزن تیرآهن
سایز تیرآهن ارتفاع عرض بال ضخامت جان ضخامت بال

وزن شاخه

1 متر (kg)

وزن شاخه

12 متر (kg)

IPE12 120 64 4/4 6/3 10/4 124/8
IPE14 140 73 4/7 6/9 12/9 154/8
IPE16 160 82 5/0 7/4 15/8 189/6
IPE18 180 91 5/3 8/0 18/8 225/6
IPE20 200 100 5/6 8/5 22/4 268/8
IPE22 220 110 5/9 9/2 26/2 314/4
IPE24 240 120 6/2 9/8 30/7 368/4
IPE27 270 135 6/6 10/2 36/1 433/2
IPE30 300 150 7/1 10/7 42/2 506/4

تیرآهن INP
تیرآهن نرمال I شکل که ضخامت بال آنها با فاصله گرفتن از جان تیرآهن کاهش می‌یابد که این استاندارد کارخانجات روسیه و چین می‌باشد.

تیرآهن IPB
تیرآهن H یا تیر آهن‌های عریض که در آنها طول بال‌ها نسبت به تیرآهن‌های IPE افزایش یافته است.
* علامت V نشان دهنده سنگین بودن و علامت L نشان دهنده سبک بودن تیرآهن می‌باشد. به عنوان مثال IPBv نشان دهنده تیرآهن عریض سنگین می‌باشد.

لیست وزن هاش ، ناودانی ، و تیر آهن به شرح زیر میباشد.
هاش سبک (HEA) ➖هاش سنگین(HEB)

١٠سبک ٢٠٠ کیلو ➖١٠ سنگین٢٤٠ کیلو
١٢ سبک ٢٤٠کیلو ➖١٢ سنگین ٣٢٠ کیلو
١٤ سبک ٢٩٦ کیلو ➖١٤ سنگین ٤٠٠کیلو
١٦ سبک ٣٦٤ کیلو ➖١٦ سنگین ٥٠٠کیلو
١٨سبک ٤٢٦ کیلو ➖١٨ سنگین ٥٩٠ کیلو
٢٠سبک ٥١٠ کیلو ➖٢٠ سنگین ٧٣٠ کیلو
٢٢سبک ٦١٠کیلو ➖٢٢ سنگین ٨٥٠ کیلو
٢٤سبک ٧٢٠ کیلو ➖٢٤ سنگین ٩٩٨ کیلو
٢٦سبک ٨٢٠ کیلو ➖٢٦سنگین ١١٢٠ کیلو
٢٨سبک ٩٢٠ کیلو ➖٢٨سنگین ١٢٤٠کیلو
٣٠سبک ١٠٥٠کیلو ➖٣٠سنگین١٤٠٠کیلو
٣٢سبک ١١٧٠کیلو ➖٣٢سنگین١٥٣٠کیلو
٣٤سبک ١٢٦٠کیلو ➖٣٤سنگین ١٦٠٠کیلو
٣٦سبک ١٣٥٠کیلو ➖٣٦سنگین١٧٠٠کیلو
٤٠سبک ١٥٠٠کیلو ➖٤٠سنگین١٨٦٠کیلو
٤٥سبک ١٦٨٠کیلو ➖٤٥سنگین٢٠٥٠کیلو
٥٠سبک ١٨٦٠کیلو ➖٥٠سنگین٢٢٥٠کیلو
٥٥سبک ١٩٩٢کیلو ➖٥٥سنگین٢٤٠٠کیلو
٦٠سبک ٢١٤٠کیلو ➖٦٠سنگین٢٥٥٠کیلو
٦٥سبک ٢٢٩٠کیلو ➖٦٥سنگین٢٧٠٠کیلو
٧٠سبک ٢٤٥٠کیلو ➖٧٠سنگین٢٨٩٢کیلو
٨٠سبک ٢٦٧٠کیلو ➖٨٠سنگین٣١٤٤کیلو
٩٠سبک ٣٠٢٠کیلو ➖٩٠سنگین٣٥٥٠کیلو

کلیه وزن ها طبق جدول اشتال بوده و بارها همگی ١٢ متر می باشد


محاسبه تقریبی وزن میلگرد:

🔸یک فرمول ساده وکارگاهی برای محاسبه یک مترطول میلگرد
نمره میلگردبه توان 2 تقسیم بر162

✅ مثال: میلگرد20

(20*20=400)/(162)=2.47

  • مهندس علیرضا خویه

۱-طراحی و اجرای سازه های فولادی و بتن

۲-مقاوم­سازی انواع سازه ها ( ساختمان، پل و…)

۳-تقویت ستون ها توسط الیاف کامپوزیت

۴- تقویت ستون توسط روش نزدیک به سطح

۵- تقویت ستون توسط ژاکت بتنی

۶- تقویت ستون توسط ژاکت فولادی

۷- تقویت تیرتوسط تیرکمکی و دستک

۸-تقویت تیر بتنی توسط الیاف کامپوزیت

۹- تقویت تیر توسط ژاکت بتنی

۱۰- تقویت تیر توسط روش نزدیک به سطح NSM

۱۱-تقویت تیر توسط ورق فولادی

۱۲-تقویت سازه های بنایی توسط الیاف کامپوزیت

۱۳-اضافه نمودن بادبند به ساختمان بتنی و فولادی

۱۴-تقویت دال و تیرچه بتنی توسط الیاف کامپوزیت

۱۵-تقویت دیوار برشی توسط الیاف کامپوزیت

۱۶-اضافه نمودن دیوار برشی به ساختمان فولادی و بتنی

۱۷- تقویت فونداسیون با اضافه نمودن شمع

۱۸-تقویت فونداسیون توسط افزایش مقطع

۱۹-تقویت فونداسیون توسط برش بتنی و آرماتوربندی مجدد

۲۰-تقویت فونداسیون توسط روش نزدیک به سطح NSM

۲۱-تقویت فونداسیون توسط میکروپایل

۲۲-سیستمهای پیش تنیده و پس کشیده

۲۳-پایداری گود

۲۴-دیوار دیافراگمی

۲۵-شمع

۲۶-نیلینگ و استرند

۲۷-میکروپایل

۲۸-آزمایشهای مخرب و غیر مخرب

۲۹-اسکن رادار

۳۰-مغزه گیری از بتن

۳۱-چکش اشمیت

۳۲-کشش میلگرد و بولت کاشته شده

۳۳-کشش الیاف ومیلگردهای کامپوزیتی

۳۴-کشش میکروپایل و نیلینگ

۳۵-آزمایش بارگذاری سقف

۳۶-آزمایش کشش فولاد

۳۷- برش بتن

۳۸-برش دال فونداسیون

۳۹-برش بتن توسط سیم برش

۴۰-برش بتن توسط مغزه گیری

۴۱-برش دیوار

۴۲-ترمیم بتن و تزریق ترک

۴۳-تزریق ترک توسط اپوکسی

۴۴-سندبلاست

۴۵-پاشش بتن یا ملات تعمیراتی

۴۶-اعمال اپوکسی محافظ

۴۷-آب بندی

۴۸-تزریق فوم پلی یورتان

۴۹-آب بندی با رنگ و رزین

۵۰-آب بندی غشائی

۵۱-شاقول نمودن ساختمانهای کج شده

۵۲-حذف دیوارهای باربربنایی

۵۳-الیاف کامپوزیت

۵۴-کامپوزیتهای پیش ساخته

۵۵-رزین ها

۵۷-FRP

  • مهندس علیرضا خویه

بهسازی لرزه ای چیست؟

بهسازی لرزه ای به معنای بهبود بخشیدن به وضعیت لرزه ای سازه های موجود است.
در بهسازی لرزه ای هدف ، برابر ساختن ظرفیت سازه با نیاز لرزه ای است که میتوان با افزایش ظرفیت سازه و یا با کاهش نیاز لرزه ای به این هدف رسید.
افرایش ظرفیت سازه با افزایش سختی و مقاومت آن امکان پذیر است که به آن مقاوم سازی میگویند.
کاهش نیاز لرزه ای سازه نیز میتواند از طرق مختلف انجام شود مانند : افزایش شکل پذیری ، کاهش جرم ، کاهش نامنظمی ، و استفاده از تکنولوژیهای نوین طرح لرزه ای مانند استفاده از
جداسازی لرزه ای ، میراگرها و ...
در ارائه طرح بهسازی ، مهندس در بهسازی بایستی به دو مقوله اجرایی و اقتصادی بودن طرح فوق العاده توجه کند. چراکه بهسازی لرزه ای حرکت بر لبه تیغ است.

  • مهندس علیرضا خویه

دیوار های سوله

مهندس علیرضا خویه | | ۰ نظر

سوله ها همواره رفتار مناسبی در زلزله ها داشتند که عموما پس از زلزله به عنوان محلی برای اسکان موقت افراد در نظر گرفته می شوند. عمده ترین ضعفی که ممکن است سوله در زلزله آسیب ببینند، دیوارهای سوله می باشد که به جهت ابعاد بزرگی که دارند اگر به درستی توسط وال پست ها مهار نشوند امکان فرو ریزش دارند. ارائه دیتایل مناسب جهت اجرای این دیوارها اغلب نادیده گرفته می شود که منجر به ایجاد خسارت و عدم کاربری پس از زلزله می شود.

یکی از راهکارهای مناسب برای دیوارهای سوله ، استفاده از پنل های پیش ساخته است . انواع مختلفی از صفحات پیش ساخته بتنی و غیر بتنی توسط کارخانه ها ساخته می شود که به عنوان دیوار یا دال در سازه ها می تواند مورد استفاده قرار گیرد.

در زیر تصاویری از این دیوار های پیش ساخته را می توانید مشاهده کنید:

  • مهندس علیرضا خویه

اسکن آرماتور یکی از تست های غیر مخرب در بحث مقاوم سازی ساختمان ها می باشد. از طریق دستگاه های اسکنر می توان به اطلاعاتی نظیر فاصله آرماتورها از هم و سایز میگرد ها پی برد که کمک بسیار زیادی در مدلسازی دقیق تر ساختمان های موجود جهت ارائه طرح بهسازی و مقاوم سازی می کند

چنانچه نیاز به بررسی و ارزیابی سازه جهت بهسازی لرزه ای ساختمان دارید و یا نیاز به عملیاتی همچون، اسکن آرماتور، کاشت آرماتور، کر گیری و یا خدماتی همچون FRP و ژاکت فولادی و بتنی دارید می توانید با اینجانب تماس بگیرید:  09120453389  مهندس خویه - کارشناس ارشد مهندسی عمران-زلزله

  • مهندس علیرضا خویه

طراحی معماری پارکینگ

مهندس علیرضا خویه | | ۰ نظر

نکات کلیدی و مهم در طراحی معماری پارکینگ مطابق با ضوابط شهرداری و مبحث چهارم مقررات ملی ساختمان ایران بشرح ذیل میباشد
۱-قرارگیری یک پارکینگ حداقل عرض ۲/۵متر
۲-قرارگیری دو پارکینگ کنار هم حداقل عرض ۴/۵متر
۳-قرارگیری سه پارکینگ کنار هم حداقل عرض ۷متر
۴-طول مورد نیاز جهت پارکینگ ۵ متر
۵-حداقل فضای یک پارکینگ ۵×۲/۵ متر
۶-شعاع گردش جهت مانور ۵متر
۷-طبق ضوابط شهرداری تا یک پارکینگ مزاحمت قبول میباشد
۸-حداقل ارتفاع ۲/۲۰ متر
۹-چنانچه پارکینگ در زیرزمین باشد شیب استاندارد رامپ ۱۵ درصد
۱۰-پارکینگهای عمومی اگر ورودی و خروجی یکی باشند عرض ورودی و خروجی ۵ متر اگر جدا از هم باشند عرض هرکدام ۳ متر است

  • مهندس علیرضا خویه

دلایل کلی ترکخوردگی کف زیر زمین

نشست

اغلب ترکخوردگی نتیجه نشست کف زیرزمین است. این مسئله زمانی اتفاق میافتد که زمین زیر کف متراکم شود. اگر نشست یک منطقه از منطقه دیگر بیشتر باشد، ترکخوردگی ایجاد میشود.

آب

آب نیز مکانیسمی مانند نشست در کف ایجاد میکند. آب اضافی میتواند باعث ناصافی کف زیرزمین شود. وقتی که کشش ناشی از توزیع ناهمگون وزن بیش از حد زیاد شود، ترکخوردگی و شکست ایجاد میشود.

ضخامت نامناسب

اگر سازنده به درستی کف زیرزمین را اجرا نکند و یا ضخامت مناسب را رعایت نکند، احتمال ایجاد ترکها زیاد میشود. حداقل ضخامت کفسازی باید 4 اینچ بوده و استفاده از مفتولها یا میلگردهای مسلح کننده نیز توصیه میشود.

توزیع نامناسب وزن

با توجه به نوع کاربری زیرزمین، وسایل قرار گرفته روی کف زیرزمین میتواند باعث انتشار ترک در آن شود. اگر در زیرزمین از وان آب گرم، میز بیلیارد یا هر وسیلۀ سنگین دیگری استفاده شود، توزیع نامناسب وزن میتواند ترک ایجاد کند. این مسئله زمانی که ضخامت کف نامناسب باشد، بیشتر محتمل است.

انجماد/ذوب

وقتی خاک منجمد میشود، منبسط شده و زمانی که مجددا ذوب میشود، منقبض میگردد. همانگونه که در طول سالها گزارش شده، انبساط و انقباض مقدار اندکی باعث جابجایی دال بتنی کف میشود. این مسئله سرانجام فشاری را بر دال بتنی کف وارد میآورد. وقتی فشار بسیار زیاد میشود، بتن ترک خورده و چند قسمت میشود. این فرایند در مناطقی که تغییرات دمایی زیاد را تجربه میکنند، محتمل تر است.

  • مهندس علیرضا خویه

بررسی ترک خوردگی دیوار ساختمان هنگام گودبرداری 

هر ساله مواقع بسیاری، ارزیابی از ترک خوردگی هایی که در دیوارهای زیرزمین مشاهده میشود، به عمل میآید. گاهی اوقات میتوان گفت که این ترک خوردگی یک تهدید برای ظرفیت سازهای و استحکامی فونداسیون به حساب نمی آید. مواقع دیگر باید توجه شود یک احتمال بالقوه ترک خوردگی و خرابی بیشتر وجود دارد و برای استحکام دیوار باید تدابیر تعمیراتی به کارگرفته شود. در ادامه به صورت مختصر انواع ترکخوردگیها در دیوار زیرزمین بررسی میشود:

چه نوع بارهایی روی دیوار اعمال می شود

دیوار حائل زیرزمین دو وظیفه مهم برای ساختمان انجام می دهد:

الف) بارهای کف و سقف را به زیر پایههای ستون انتقال میدهد و به پخش شدن یکنواخت فشار خاک زیر پایه ستونها کمک می کند.

ب) فشار جانبی خاک مجاور دیوار زیرزمین را مهار میکند.

بار عمودی روی یک دیوار زیرزمین از یک سقف یا کف بالائی ممکن است 700 کیلوگرم بر متر طول دیوار باشد. ممکن است بار جانبی خاک (بارهایی که بطور جانبی به دیوار فشار می آورند) 450 کیلوگرم بر متر طول دیوار باشد. البته این بارها متغیر هستند و به تعداد طبقات، جهت دهانه سقفها، طول دهانهها، کیفیت و ارتفاع خاکی که بالای سطح زیرزمین نگه داشته شدهاند، بستگی دارند.

درحالی که این بارها ممکن است به نظر زیاد برسند، یک دیوار حائل ساختمانی خوب طراحی شده به راحتی قادر به مهار کردن این بارها خواهد بود و در برابر این نیروها مقاومت خواهد کرد.

عواملی ایجاد کنندۀ ترک خوردگی در دیوار

ترکها در دیوارهای زیرزمین، شواهدی دال بر حرکت و جنبش هستند. بتن و مصالح بنایی که در ساخت دیوارهای فونداسیون استفاده می شوند در شرایط تراکم و فشردگی نیرومند عمل میکنند اما در موقعیت کشش اینطور نیستند. بنابراین هر حرکتی که فشار کششی در دیوار ایجاد کند به احتمال قوی باعث ترک خوردگی خواهد شد. گاهی اوقات یک نوع متداول ترک خوردگی تحت عنوان ترک خوردگی پلکانی (stair step) شناخته میشود. این نوع ترک، یک الگوی خطوط مارپیچی قطری دارد که اغلب از درزهای ملات پیروی می کند. این نوع ترک خوردگی معمولاً حاصل نشست نامتقارن روی هر دو طرف ترک است.

ترک متداول دیگر یک ترک عمودی است. این ترک ممکن است کامل عمودی نباشد و مقداری به صورت پلکانی(Stair Step) باشد، اما ترک معمولاً به جای اینکه فقط از درزهای ملات پیروی کند واحدهای بنائی را هدف قرار داده و در جهت قائم پیش می رود. این نوع ترک خوردگی اغلب حاصل کاهش حجمی و حرکات ناشی از تغییر حرارت دیوار است. نوع دیگر ترک خوردگی که بسیار نگران کننده است، ترک افقی است. این ترک معمولاً نزدیک میانه دیوار روی می دهد. در امتداد این ترک خوردگی، دیوار معمولاً خم شدگی درونی قابل توجهی را به نمایش می گذارد. این نوع ترک حاصل نیروهای جانبی خاک است که در جهت مخالف دیوار فشار وارد می آورد که از نیروی مقاومت کننده بلوک یا بتن دیوار تجاوز میکند.

در ادامه نگاهی دقیقتر به هر یک از انواع ترک خواهد شد و پیشنهادات کلی و راه کارهای متداول ارائه خواهد شد.

انواع ترکخوردگی دیوار

ترک پلکانی(Stair Step) ناشی از نشست تاج گود بدون نیلینگ یا موارد دیگر

همانطور که در بالا ذکر گردید، این ترک خوردگی به احتمال قوی حاصل نشستهای نامتقارن پایه ستون و قسمت پایین دیوار است. در نتیجه چنانچه گودبرداری بدون تمهیداتی چون نیلینگ باشد، ممکن است به علت نشست تاج گود این پدیده به وجود آید، همین طور این پدیده ممکن است به تغییر در اعمال بار روی دیوار یا یک بخش نرم در خاک زیر پایه ستون مربوط باشد. اولین سوالی که مطرح میباشد این است که آیا این دیوار هنوز در حال حرکت است یا خیر. این موضوع می تواند توسط کنترل و بازبینی شرایط حل شود. این کار کمی زمان می برد اما از آنجایی که این نوع ترک معمولاً یک تهدید جدی به شمار نمی آید زمان لازم جهت دسترسی به ضبط بعضی اطلاعات وجود دارد. چندین مکان با یک مارکر ثابت علامت گذاری شده و پهنای ترک اندازه گیری میشود. این اطلاعات که شامل دادهها هستند ضبط میشود. در صورت امکان از شرایط، عکسبرداری شود. این کار ماهانه یک بار یا بیشتر تکرار شود تا مشاهده گردد آیا اندازهها در طول زمان تغییر می کنند یا خیر.

روش دیگر بررسی و کنترل ترک این است که یک نوار از یک سو به سوی دیگر ترک قرار داده شود و از یک تیغ برای جدا کردن نوار در مکان ترک استفاده شود. هر ماه این کار تکرار شود تا مشاهده شود آیا شکاف باریک تیغ پهن می شود یا خیر. عکسبرداری هم ممکن است انجام شود. حرکاتی که منجر به ترک نوع پلکانی(Stair Step) میشوند معمولاً کوتاه مدت هستند و در یک دوره زمانی کوتاه به یک مرحله پایدار میرسند، مثلاً دو یا چهار ماهه. زمانی که هیچ تحرک بیشتری ظاهر نشود ترک میتواند ترمیم شود. زمانی که حرکت خیلی مختصر اتفاق افتاده است، تعمیرات نسبتاً آسان هستند. ملات شل از ترک خارج شده و فاصله می تواند با یک ملات ترکیبی پر شود. این نوع ترک احتمالاٌ از وسط دیوار توسعه پیدا کرده و روی سطح خارجی منعکس می شود. در نتیجه عایقهای رطوبتی و حراراتی دیوار نیز گسیخته میشود. پس لزوما این مسئله نیز باید مد نظر قرار بگیرد.

ترکخوردگی عمودی

این نوع ترک خوردگی اغلب با کاهش حجمی بتن و مصالح بنایی به علت تغییرات دمایی یا رطوبتی روی میدهد. بلوک و بتن در یک شرایط مرطوب ساخته می شوند. آب در بتن و ملات و دوغاب وجود دارد. آب آزاد (اضافی)، آبی که برای ایجاد اتصال شیمیائی در سیمان پرتلند مورد نیاز نیست، در حقیقت باید به بیرون دیوار تبخیر شود. این تبخیر در طول فرآیند عمل آوری بتن اتفاق می افتد و کمبود آب منجر به یک کاهش مختصر در حجم خواهد شد. دیوار برای جبران کردن این کاهش تمایل به افت حجم پیدا می کند. هر بخش دیگر ساختمان سعی دارد که دیوار را در یک موقعیت محکم و سخت نگه دارد و مانع از کاهش حجمی آن شود. بنابراین به جای کاهش حجم از قسمت انتها، دیوار ترکها را در سراسر طولش گسترش خواهد داد. در حقیقت یک دیوار خوب طراحی شده برای جبران کردن کاهش حجمی، صدها شکاف میکروسکوپی و کوچک را در تمام طولش گسترش خواهد داد. با این وجود گاهی اوقات دیوار یک سطح صاف و تراز پیدا خواهد کرد و تصمیم به جبران تمام کاهش حجم در یک محل می گیرد. اینکه در قابل توجه ترین و مشخص ترین محل دیوار، ترک جدید ایجاد خواهد شد به نظر اجتناب ناپذیر می رسد.

تغییرات دما نیز احتمال دارد منجر به تغییرحجمی مشابه در دیوارها شوند. یک دیوار که دریک محیط سرد برای یک دوره طولانی قرار گیرد و سپس در دمای اطاق گرم شود، یا برعکس (اول گرم و سپس سرد) دستخوش مقداری تغییر حجمی خواهد شد. پدیده دیگر مثل تغییرات شیمیایی در بلوک و بتن نیز به همان اندازه می توانند باعث تغییرات حجمی در دوره زمانی طولانی تر شود و ایجاد ترک کند.

در بیشتر نمونه ها، این شرایط نگرانی چندانی ایجاد نمی کند و معمولاً استحکام و کشش دیوار را به طور جدی تهدید نمی کند. این روش بازنگری و تعمیر ترک، مشابه ترک پلکانی(Stair Step) است که در بالا توضیح داده شد. این نوع شکاف همچنین ممکن است بر ضد آب بودن و ضد رطوب بودن اثر بگذارد.

ترک خوردگی افقی ناشی از حرکت جانبی تاج گود بدون نیلینگ یا موارد دیگر

این ترک می تواند ناشی از حرکت جانبی تاج گود در خلال گوبرداری باشد. یک ترک افقی نسبتاً بلند در یک دیوار فونداسیونی بتنی و مصالح بنایی، موقعیتی نگران کننده است. این ترک و خم شدگی درونی قابل اندازه گیری که معمولاً همراه آن است، نشانهای است از این مطلب که دیوار به لحاظ نظری از بین رفته و ویران شده است. این ویرانی ضرورتاً به این معنی نیست که دیوار هر لحظه فرو خواهد ریخت و خاک درون زیرزمین ریزش خواهد کرد، اما قوانین فیزیک و استاتیک تاکید بیان میدارند که ضریب اطمینان در مقابل ریزش به طور قابل ملاحظهای کاهش پیدا کرده است.

این احتمال وجود دارد که اندازه کوچک ترک و فقدان خم شدگی درونی دیوار به معنی این باشد که دیوار هنوز استوار است و قادر به مقاومت کافی در مقابل بارهای فشار عمودی و جانبی می باشد. اما احتمال فروریزش وجود داشته و ضریب اطمینان به یک سطح غیر قابل قبول تبدیل شده است. این نوع ترک مدرکی دال بر حرکت افقی و خم شدگی درونی دیوار است. خاک بخش بیرونی به دیوار فشار می آورد و دیوار قدرت کافی جهت مقاومت در مقابل این حرکت را ندارد. این امکان وجود دارد که دیوار بخوبی طراحی نشده باشد، اما ممکن است نیروهای وارده بیش از حد شده باشد. اگر زهکشی ضعیف باشد و خاک مجاور دیوار اشباع شود، بخصوص در فصل زمستان و زمانی که نفوذ یخبندان شدید باشد، نیرویی که به دیوار فشار می آورد ممکن است خیلی بیشتر شود. همچنین اگر دیوار در طول فرآیند خاکریزی به اندازه کافی در مقابل فشار مهار نشده باشد ممکن است در طول ساخت حرکت ایجاد شود. در نمونه های شدید ممکن است عاقلانه باشد که برای سقفی که روی این دیوار است ساپورتهای موقتی نصب شود. اما فونداسیون از دیوار بیرونی وسقف روی آن حمایت می کند و الزاماً شمع زنی موقت در زیرزمین این بارها را تحمل نخواهد کرد مگر اینکه شمع زنی موقت در تمام قسمت تا بخش زیر قسمتهای زیر سقف گسترش یابد.

تمهیدات کلی برای رفع آسیبدیدگی

از بین بردن و تجدید بنای دیوار

این روش یک راه حل بسیار گرانقیمت و پرهزینه خواهد بود اما ممکن است تمهیدی باشد که بزرگترین اطمینان را ایجاد کند. مراحل آن شامل: گودبرداری تا تراز پی، شمع زنی کف یا کفها و سقف روی دیوار ، تخریب دیوار و تجدید بنا. درتجدید بنای دیوار باید نیروهایی که منجر به ترکهای اصلی و خم ها می شوند در نظر گرفته شود. دیوار باید طوری طراحی شود که مقاومت کافی دربرابر این نیروها را داشته باشد. یک دیوار خوب طراحی شده به احتمال زیاد شامل تسلیح کنندههای عمودی، مهارهای متصل به شالودۀ ستون و سقف، زهکشی، عایقهای رطوبتی و خاکریز دانهای تمیز میباشد.

مهارسازی دیوار با دوخت به پشت (tie backs)

با دوخت به پشتهای (tie backs) مارپیچی شکلی دیوار به خاک آن طرف فونداسیون پیوند میخورد. این دوخت به پشتها (tie backs) با فاصله مرکز به مرکز 6 تا 8 فوت با میلگردهای توپر یا توخالی به وجه داخلی دیوار متصل میگردند. دیوارها ممکن است با این دوخت به پشتها (tie backs) به سمت عقب کشیده شوند اما ممکن است مقداری گودبرداری برای دستیابی به این امر مورد نیاز باشد. حتی اگر دیوار نتواند راست شود دوخت به پشتها (tie backs) برای مهارسازی دیوارها طراحی خواهند شد و نیروی کافی برای مقاومت در برابر فشارهای افقی که در آیند تحمیل می شوند را فراهم خواهند کرد. دوخت به پشت ها (tie backs) به یک فضای کافی از درون خاک نیازخواهند داشت ( احتمالا 10فوت تا 12فوت). اگر خط ملک خیلی به دیواری که نیاز به تعمیر دارد نزدیک هست، ممکن است اجازه عبور از خط ملک (property line) روی ملک همسایه وجود نداشته باشد.

مهار کردن دیوار با پروفیلها یا کلافهای درونی

ممکن است پروفیلهای فولادی یا چوبی قرارداده شده روی سطح درونی دیوار جهت مهار دیوار طراحی شود و نیروی جانبی را به کف زیرزمین و دیافراگم طبقه اول انتقال دهد. این امر ممکن است کم هزینه ترین راه حل باشد اما باعث کاهش فضای درونی خواهد شد و ممکن است دیوار دقیقا به موقعیت ابتدایی بازنگردد. کلافهای درونی به عنوان یک "دیوار دوم" درون دیوار بنایی اصلی عمل می کنند و وقتی دیوار اصلی میخواهد بیشتر به سمت درون خم شود به سمت عقب برخلاف دیوار بنایی فشار وارد می کند . طراحی این نوع مقاومسازی بستگی به فشار روی دیوار، ارتفاع دیوار و مقدار مقاومت جانبی کف طبقه بالا دارد. اتصال به کف زیرزمین با یک صفحه فولادی که با مهارهایی به کف وصل شده، ایجاد میشود. اگر صفحه بتنی کف زیرزمین در موقعیت ضعیفی قراردارد یک شالوده بتنی جدید زیر دیوار ساخته می شود. اتصال به بالای دیوار به قاب موجود در سقف ممکن است به سادگی با اتصال پروفیلهای عمودی به تیرهای سقف زیرزمین امکان پذیر باشد. اگر اعضای فولادی به جای اعضای چوبی به عنوان اعضای مهاربند مقاوم استفاده شده باشند فاصله گذاری ممکن است بزرگتر باشد، اما اتصالات به دال کف زیرزمین و سقف زیرزمین مشکل تر میشوند.

مش و شاتکریت

در این روش سطح دیوار با مشهای فولادی پوشیده و سپس بتنپاشی صورت می گیرد. این روش بیشتر به جهت یکپارچه کردن رفتار دیوار هنگام زلزله به کار میرود. در صورتی که در ساخت دیوار و فونداسیون آن از مصالح بنایی استفاده شده باشد این روش میتواند همراه با کلافهای قائم و جایگزین کردن فونداسیون بتن مسلح با کرسیچینی زیر دیوار به کار رود.

منبع: سایت آسیا عمران خاک

  • مهندس علیرضا خویه

دلایل نشست و کج شدن ساختمان

ساختمان در طول عمر مفید خود که مطابق با آیین نامه های طراحی سازه حدودا 50 سال می باشند در شرایط مختلف قرار می گیرند، و به احتمال زیاد زلزله های کوچک و بزرگی را نیز تجربه خواهند کرد و باز به احتمال زیاد آسیب های جزئی و کلی به سازه ها وارد شود.

اما آنچه ممکن است به سازه آسیب وارد کند تنها زلزله، سیل، باد و... نیست! بعضا ساختمان ها به دلایل مختلفی دچار آسیب می شوند.
یکی از آسیب هایی که ممکن است یک ساختمان به آن دچار شود، نشست ساختمان یا کج شدن ساختمان است که ممکن است با بروز ترک و یا بدون علامت باشد.

نشست ساختمان و کج شدن و ناشاقولی ساختمان

در این مطلب قصد داریم به برخی از دلایل نشست و کج ساختمان بپردازیم:

پیش از شروع مطلب باید به این نکته بپردازیم که ساختمان ها بر اساس یک سری فرضیات مهندسی طراحی و ساخته می شوند، هر اندازه شناخت یک مهندس از شرایط ساختمان بیشتر باشد، طراحی دقیق تر است. از جمله این فرضیات می توان به بارهای وارد بر سازه ( بارهای ثقلی و جانبی) و همچنین مقاومت خاک اشاره نمود.

از مهمترین دلایل نشست ساختمان و کج شدن آن ها به موارد ذیل می توان اشاره نمود:

  1. ترکیدگی لوله و نشت آب از سیستم آبرسانی و فاضلاب به زیر فونداسیون ساختمان

  2. ضعیف بودن پی و فونداسیون ساختمان

  3. ضعیف بودن خاک منطقه و یا قرار گرفتن ساختمان بر روی خاک های مسئله دار(خاک های سست، خاک های دستی و یا خاک های رمبنده)

  4. طراحی غلط سازه

  5. وجود حفره، چاه و قنات در اطراف ساختمان

  6. گودبرداری اطراف ساختمان

ترمیم نشست و کج شدگی و مقاوم سازی ساختمان

خوشبختانه راهکارهای مناسبی برای ترمیم نشست ساختمان وجود دارد که بنا بر مقتضیات و شرایط هر ساختمان ، یک مهندس زلزله تصمیم می گیرد از کدام روش استفاده کند، پیدا کردن علت نشست و کج شدگی ساختمان و شرایط محیطی ساختمان ( از جمله وجود و یا عدم وجود همسایه، وجود و یا عدم وجود امکان تخلیه ساختمان، میزان نشست و کج شدگی ساختمان و مسائل ایمنی) هر کدام در انتخاب روش مقاوم سازی ساختمان بسیار موثر است و می تواند سرعت اجرای مقاومسازی و هزینه آن را کاهش و یا افرایش دهد.

چنانچه نیاز به مشاوره و یا اجرای مقاوم سازی ساختمان خود دارید می توانید با اینجانب ( مهندس علیرضا خویه، کارشناس ارشد مهندسی زلزله) با شماره تماس: 09120453389 تماس بگیرید.

  • مهندس علیرضا خویه