مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۲۴۸ مطلب با موضوع «سازه ها» ثبت شده است

نکاتی در نرم افزار ETABS

مهندس علیرضا خویه | | ۰ نظر
نکاتی در مورد ETABS:
برنامه ETABS در صورت استفاده از آیین‌نامه AISC360-05 یا بالاتر و انتخاب نوع قاب EBF موارد زیر را برای مهاربندهای واگرا کنترل می کند:
اگر تحت ترکیب بارهای معمولی نیروی محوری ستون‌ها از 0.4 ظرفیت فشاری یا کششی آنها فراتر رود، ترکیب بارهای ویژه تشدید یافته بایستی بدون حضور لنگر خمشی و نیروی برشی و تنها تحت اثر نیروی محوری کنترل شوند(AISC SEISMIC 8.3, 4.1).
مقاطع تیرها باید فشرده لرزه‌ای باشند (AISC SEISMIC 13.2d, 8.2b, Table I-8-1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام می‌شود.
مقاومت برشی تیر پیوند باید از برش ضریبدار وارد بر آن بزرگتر باشد (AISC SEISMIC 15.2b). برنامه طراحی تیر پیوند را با استفاده از روابطی به مانند روابط مبحث دهم، کنترل می‌کند.
دوران تیر پیوند، نسبت به کل تیر دهانه بادبند واگرا از روی جابجایی نسبی طبقه (جابجایی کلی بالای ستون منهای جابجایی کلی پایین ستون) بدست می‌آید. برنامه دوران تیر پیوند را تحت بدترین ترکیب بار کنترل و گزارش می‌دهد.
تیر خارج از تیر پیوند بایستی برای 1.1Ry برابر مقاومت تیر پیوند طراحی شود (AISC SEISMIC 15.6b). برنامه این کنترل را انجام می‌دهد.
مقاطع ستون‌‌ها باید فشرده لرزه‌ای باشند (AISC SEISMIC 13.2d, 8.2b, Table I-8-1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام می‌شود.
تمام مهاربندها بایستی فشرده باشند (AISC SEISMIC 10.4a, 8.2a, AISC Table B4.1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام می‌شود.
مهاربندها برای 1.25 برابر ظرفیت برشی تیر پیوند طراحی می‌شوند. ابتدا نیروی محوری مهاربند که با 1.25 ظرفیت مورد انتظار تیر پیوند است بدست می‌آید. سپس نیروی حاصل جایگزین بار زلزله در ترکیب بارها شده و با اثر بارهای ثقلی جمع می‌شوند (ASIC SEISMIC 15.6a).
در طراحی ستون‌ها باید ترکیب بار ویژه‌ای که در آن ستون‌ها باید برای 1.1Ry برابر ظرفیت برشی تیر طراحی شود در نظر گرفته شود. ضریب 1.1 برای در نظر گرفتن اثرات سخت شوندگی کرنشی است.
برای مهاربندهای همگرا، فشردگی تیرها و ستون‌ها و مهاربندها و همچنین طراحی ستون‌ها با استفاده از ترکیب بارهای تشدید یافته صورت گرفته و طراحی ظرفیتی انجام نمی‌شود.
منبع: کانال آقای امین قلیزاده
  • مهندس علیرضا خویه

بارهای خیالی NOTIONAL در Etabs

مهندس علیرضا خویه | | ۰ نظر

بارهای خیالی مرده و زنده چی هستند؟
ایا ضرورتی دارد که حتما اعمال شود؟
اگر ضرورت اعمال دارد چگونه در ایتبس عمل می کنیم؟

 

در روش تحلیل_مستقیم، بایستی بارهای فرضی  (خیالی) که برای لحاظ نمودن اثرهای خطای هندسی ساخت و اجرا اعمال می‌شوند، به میزان N=0.002Yi که در آن Yi بار ثقلی موجود در تراز iام است، تعریف شوند. در حال حاضر برنامه ETABS، ترکیب بارهای طراحی شامل بارهای ثقلی و بارهای فرضی را ایجاد می‌نماید. در آیین‌نامه‌های طراحی به روش حالات حدی به لحاظ نمودن اثرات ثانویه تاکید شده است. این بارها ضریبی از بارهای ثقلی هستند و در دو جهت اصلی سازه (مانند باز زلزله) اعمال می‌شوند. در هر دو روش تحلیل مستقیم و یا ضرائب طول از بارهای فرض استفاده می‌شود. اگر در سازه‌ای بارهای جانبی حاکم باشند، بارهای فرضی تاثیری در عملیات طراحی نخواهند داشت. بارهای فرضی بایستی مانند بارهای زلزله بصورت رفت و برگشتی معرفی شوند. در آیین‌نامه AISC360-05 در هر دو روش ضرایب طول و روش مستقیم، استفاده از بارهای فرضی لازم دانسته شده است. ضریب 0.002 نقشی به مانند بارهای زلزله دارد. در هر طبقه بارهای ثقلی در این ضریب ضرب شده و بطور جانبی بر سازه اعمال می‌شوند. در برنامه ETABS برای معرفی بارهای فرضی از دستور Define menu > Static Load Cases استفاده می‌شود. در ETABS 2016 بایستی از مسیر Define menu > Load Patterns اقدام شود.

 مطابق شکل زیر در بخش Load، یک نام دلخواه وارد نموده و در بخش Type، حالت NOTIONAL را انتخاب نمایید. مقدار Self-Weight Multiplier برای این حالت بار صفر و گزینه Auto Lateral Load را می‌توان در حالت Auto یا None انتخاب نمود. در صورتی که حالت Auto انتخاب شود، بارهای فرضی بطور خودکار توزیع شده و در حالت None بایستی بصورت دستی اعمال شود. در صورت انتخاب حالت Auto  می‌توان با استفاده از دکمه Modify Lateral Load (پنجره Auto Notional Load Generation  ظاهر شده) تنظیمات خودکار توزیع این بار را تعریف نمود. در بخش Notional Load Value و در قسمت Base Load Case بایستی یکی از بارهای ثقلی انتخاب شود. در قسمت Load Ratio ضریب بار فرضی معرفی شده و در بخش Notional Load Direction جهت اعمال این بار فرضی مشخص شود.
برای هر بار ثقلی بایستی دو حالت بار فرضی (یکی در جهت x و دیگری در جهت y) معرفی شود. اثر رفت و برگشتی بار در ترکیب بارها لحاظ خواهد شد.

 

منبع: کانال دکتر علیرضایی

 


Notional Loads are used by some building codes for the stability design of a structure. They serve as a minimum lateral load, or as an alternative to modeling the actual out-of-plumbness or out-of-straightness of the structure. Instead of changing the geometry of the structure, an equivalent de-stabilizing load is added to the structure. There are numerical benefits to handling this out-of-plumbness issue with loads rather than geometry. Essentially, it is quicker and easier to adjust the loading on a structure than it is to modify the stiffness matrix of the structure.

The implementation of these notional loads is not based on a single code, but on the concept of using lateral forces equal to a percentage of the applied vertical load at each floor level. Codes that may require the use of notional loads include the following: 

  • ASCE 7: A minimum lateral load of 1% of the Dead Load of the structure should be applied at each floor as a notional load.
  • AISC 360: A notional load to account for out-of-plumbness of the structure of 0.2% to 0.3% of the total gravity load (DL + LL) shoudl be applied at each floor as a notional load.
  • AS 4100: Has a default of notional load of 0.2%
  • NZS 3404: Has a default notional load of 0.2%
  • BS 5950: Has a default notional load equal to 0.5%
  • EC 1993-1-1: Has a notional load that can vary, but which will not normally exceed 0.5% of the applied vertical load

These notional loads are normally only assumed to act for load cases which do not include other lateral forces. However, the specific requirements of the individual code may require the use of these loads for other load cases depending on the sensitivity of the structure to stability effects.

Notional loads can only be automatically generated for diaphragm/floor levels. The program will automatically calculate the center of mass and use that point as the location to apply the Notional Loads.

 

  • مهندس علیرضا خویه

تاثیر وجود دیوار برشی بتنی بر عملکرد لرزه ای سازه ها

در همه‌ی سازه‌ها و به خصوص در سازه‌های بلند، لازم است سختی مناسب برای مقاومت در مقابل نیروهای جانبی باد و زلزله فراهم شود. در غیر این صورت ممکن است هنگام اثر بارهای جانبی، تنش‌های بسیار زیاد و ارتعاش در اعضای مختلف ایجاد شود؛ به طوری که احساس ناراحتی شدید برای ساکنین ساختمان، و یا حتی آسیب‌های جدی برای ساختمان به وجود آورد. سختی جانبی مناسب برای مقاومت در مقابل بارهای جانبی ممکن است توسط قاب‌های خمشی، دیوارهای برشی، و یا ترکیب قاب خمشی و دیوار برشی ایجاد شود. دیوارهای برشی در حقیقت دیوارهای بتن آرمه‌ای هستند که از سختی داخل صفحه‌ای بسیار زیاد برخودار می‌باشند . این دیوارها مشابه یک تیر کنسولی قائم و عمیق عمل می‌کنند که برای ساختمان پایداری جانبی ایجاد نموده و در مقابل برش‌ها  و لنگرهای خمشی ناشی از بارهای جانبی مقاومت می‌کنند .دیوارهای برشی از آن جهت به این نام خوانده می‌شوند که قسمت عمده‌ی برش ناشی از نیروهای جانبی را تحمل کرده و به زمین انتقال می‌دهند. با این وجود، از آن جا که دیوارهای برشی مانند تیرهای طره‌ای قائم هستند، عملکرد اصلی آن‌ها "عملکرد خمشی‌" است و به همین جهت دیوار برشی چندان با عملکرد آنها هم سو نیست. در مقابل قاب‌های خمشی در مقابل بار جانبی بر خلاف نام " عملکرد برشی " داشته و با تغییر شکل برشی خود ، بارهای جانبی را به زمین انتقال  می‌دهند. در دیوراهای برشی با نسبت ارتفاع به طول کوچک، برش بیش از خمش حائز اهمیت است. در مقابل در دیوارهای برشی بلندتر، لنگر خمشی از اهیمت به مراتب بیش‌تری برخوردار است. به دلیل مشابهت عملکرد دیوارهای برشی با تیرهای عمیق، فولادهای برشی در آن ها هم به صورت افقی و هم به صورت قائم قرار داده می‌شوند. در دیوارهای برشی کوتاه‌تر ، فولادهای برشی افقی کم تر مؤثر بوده و فولادهای برشی قائم نقش مؤثرتری دارند . در مقابل در دیوارهای برشی بلندتر ، فولادهای برشی افقی تأثیر بیش تری در تحمل برش دارند .
چند نکته:
1- استفاده از دیوار برشی همیشه مناسب‌ترین روش نیست زیرا باعث تمرکز نیروی در نقاط خاصی از پی می‌شوند.
2- در سازه‌های بلند که دارای منظمی و دهانه‌های مناسب هستند، استفاده قاب خمشی ممکن است به طرح بهتری منجر شود مگر آنکه ملاحظه خاصی در ارتباط  با کنترل جابجایی مد نظر باشد.
3- در سازه‌های کوتاه‌تر از 4 طبقه استفاده از دیوار برشی در اغلب اوقات غیرمنطقی است.
4- در سازه های بلند وجود دیوار باشی باعث افزایش برش پایه میشود. این امر به دلیل افزایش سختی قاب است.

 


@AlirezaeiChannel

  • مهندس علیرضا خویه

سلام وقت بخیر تیرهای دهانه مهاربندی شورون همگرای ویژه سازه ای که طراحی کردم باIPE400و HE300ام جواب نمیده.برای حل این مشکل چکارکنم؟ممنون میشم راهنمایم کنین

 

 مهاربندهای شورن (هفتی و هشتی) در صورتی که به ظرفیت فشاری خود برسند و مهاربند فشاری دچار کمانش شده و یک مفصل خمیری در وسط آن ایجاد شود، از زیر بار فرار نموده ولیکن در اثر اختلاف نیروی موجود بین مهاربند کششی و فشاری یک نیروی نامتعادلی در تیر ایجاد می‌شود. در این حالت مقطع تیر به شدت سنگین و غیرمنطقی بدست خواهد آمد. برای حل این مشکل، دو راه حل وجود دارد:
1- گیردار کردن ابتدا و انتهای تیر جهت کاهش لنگر خمشی وسط دهانه (چندان موثر نیست)
2- استفاده از پیکربندی دو طبقه X شکل، مطابق شکل زیر (این روش موثر است). در این حالت نیروی نامتعادل حاصل از به ظرفیت رسیدن مهاربندهای پایین و بالا تا حدود زیادی یکدیگر را خنثی نموده و تیر مقطع کمتری خواهد داشت. اگر مقطع مهاربندهای بالا و پایین تیر یکسان اختیار شده باشد، نیروی نامتعادل بالا و پایین یکدیگر را خنثی نموده و اثر آن صفر می‌شود.
❗️ توجه: در هر صورتی، تیر متصل به مهاربند شورن بایستی برای اثرات ناشی از بارهای ثقلی بدون در نظر گرفتن اثر مهاربند طراحی شود. همچنین برنامه ETABS در حال حاضر قادر به طراحی تیر متصل به مهاربند شورن برای طراحی ظرفیتی نیست.

کانال @AlirezaeiChannel

 

 

  • مهندس علیرضا خویه

ضرایب ترک خوردگی بتن Etabs

مهندس علیرضا خویه | | ۰ نظر

طبق بند 9-13-8-4 مبحث نهم و در تحلیل سازه باید سختی خمشی و پیچشی اعضای ترک خورده بنحو مناسب محاسبه و منظور گردد . در غیاب محاسبات دقیق برای منظور کردن اثر ترک خوردگی می توان : 
* در قابهای مهار نشده سختی تیرها و ستونها را به ترتیب 0.35 و 0.7 سختی مقطع ترک نخورده آنها منظور نمود .
* در قابهای مهار شده سختی تیرها و ستونها را به ترتیب معادل 0.5 و 1 برابر سختی مقطع ترک نخورده آنها منظور نمود.

- لازم به تذکر است که:
1 ) این مقادیر برای پیچش نیز در نرم افزار لحاظ شود.
2) این مقادیر در نرم افزار به دو طریق قابل اختصاص و مشاهده است:
بعد از انتخاب مقاطع، از مسیر Assign menu > Frame > Property Modifiers (در ETABS2015) بصورت زیر اقدام کنید.
Moment of inertia about 2 axis ……..  0.35
Moment of inertia about 3 axis ……..  0.35
Torsion constant …………… ……..  0.35
یا اینکه از مسیر Define menu > Section Properties > Frame Sections، مقطع مورد نظر را انتخاب و بر روی گزینه Modify/Show کلیک نمایید. حال در پنجره ظاهر شده گزینه Modify/Show Modifiers را انتخاب نمایید حال در پنجره Property/Stiffness Modification Factors میتوانید ضرایب فوق را وارد کنید.

 

منبع:@AlirezaeiChannel

 

  • مهندس علیرضا خویه

مهار جانبی در Etabs یا LTB

مهندس علیرضا خویه | | ۰ نظر
طول مهار نشده عضو، فاصله بین مهارهای جانبی یا تکیه گاه‌های آن است. در یک تیر که به آن مهاربند هشتی یا هفتی متصل شده، با توجه به بند 10-3-11-1د مبحث دهم، در هر صورت وجود حداقل یک جفت مهار جانبی در محل اتصال مهاربند‌ها به تیر الزامی است. بنابراین طول مهار نشده عضو را می‌توان در این تیرها، برابر با نصف طول آن در نظر گرفت. همچنین وجود نیروی محوری در این تیرها همزمان با خمش در آنها رخ داده و بایستی از روابط تیر-ستون‌ها طراحی صورت گیرد.

مهار جانبی تیرها در قاب های خمشی با شکل پذیری متوسط باید حداکثر به 0.17E/Fy و در قاب خمشی ویژه بایستی به 0.086E/Fy باشد. هر دو بال تیر باید این مهار را داشته باشند.
خطای Lb/ry در Etabs
این خطا در کنترل هنگام طراحی قاب‌های خمشی فولادی در حالتی که طول مهارنشده تیر از 0.17E/Fy*ry بیشتر باشد برای قاب‌های خمشی متوسط و در صورتی که طول مهار نشده تیر از 0.086E/Fy*ry در قاب‌های خمشی ویژه، بیشتر باشد، در پنجره طراحی داده می‌شود. بنابراین بایستی با جزئیات مناسب در نقشه‌ها طول مهارنشده تیرها را به این مقادیر محدود نمایید. در صورت استفاده از مهارهای جانبی برای بال‌های بالا و پایین تیر قاب خمشی، بصورت موضعی مطابق شکل زیر، می‌توان در برنامه ETABS بعد از انتخاب تیر مورد نظر، از مسیر Design menu > Steel Frame Design  > Lateral Bracing  و یا از مسیر  اقدام نمایید و طول مهارنشده را وارد نمایید. در صورتی که مهارهای جانبی بصورت موضعی مطابق شکل زیر داده می‌شود، بایستی گزینه Specify Point Bracing را انتخاب نمایید. با انتخاب حالت Relative Distance from End-I فاصله مهار جانبی از ابتدای I تیر بصورت نسبی داده می‌شود و یا اینکه با انتهاب حالت Absolute Distance from End-I فاصله مهار جانبی از ابتدای I تیر بصورت مطلق داده شود.

گزینه های
Lateral bracing ... specify point bracing
And
Lateral bracing ... specify uniform bracing
چه فرقی با هم دارند؟
و برای لحاظ کردن مهار پرلینها از کدام گرینه باید استفاده شود؟
با استفاده از مسیر Design menu > {Steel Frame, Steel Joist} Design > Lateral Bracing می‌توانید مهارهای جانبی تیرها فولادی یا تیرچه‌های فولادی را مشخص کنید. برای این  منظور ابتدا آنها را باید انتخاب نموده و از این مسیر اقدام نمایید. بعد از اجرای این دستور و در بخش User Specified دو گزینه پیش روی شما خواهد بود:
* گزینه Specify Point Bracing: که مهارهای جانبی تیر انتخاب شده را بصورت نقطه‌ای مشخص می‌کند. شکل زیر یک نمونه از مهار جانبی نقطه‌ای را نشان می‌دهد. ای مهار جانبی در یک نقطه از تیر آن را از کمانش جانبی- پیچشی نگه داشته است.
* گزینه Specify Uniform Bracing: این گزینه مهار جانبی یکنواختی برای تیر در نظر می‌گیرد. این گزینه در حالاتی که فاصله مهارهای جانبی خیلی کم باید یا بصورت پیوسته تیر دارای مهار جانبی باشد، کاربرد دارد. مثلا فرض کنید در سقف تیرچه بلوک، تیر فولادی غرق در بتن بوده و هر دو سمت تیر بتن وجود دارد. این بتن می‌تواند نقش مهار جانبی پیوسته را برای آن تیر بازی کند.
منبع:@AlirezaeiChannel

 
 
http://etabs-sap.ir/%d9%86%d9%82%d8%b4%d9%87-%d8%af%d8%aa%d8%a7%db%8c%d9%84-%d9%85%d9%87%d8%a7%d8%b1-%d8%ac%d8%a7%d9%86%d8%a8%db%8c-%d8%aa%db%8c%d8%b1-%d9%87%d8%a7/
 
http://etabs-sap.ir/%d9%85%d9%87%d8%a7%d8%b1-%d8%ac%d8%a7%d9%86%d8%a8%db%8c-%d8%af%d8%b1-etabs-%db%8c%d8%a7-ltb/
http://etabs-sap.ir/%d9%85%d8%b9%d8%b1%d9%81%db%8c-%d8%b7%d9%88%d9%84-%d9%85%d9%87%d8%a7%d8%b1-%d8%aa%db%8c%d8%b1-%d8%a8%d9%87-%d8%b5%d9%88%d8%b1%d8%aa-%d9%86%d9%82%d8%b7%d9%87%e2%80%8c%d8%a7%db%8c/
http://etabs-sap.ir/%D8%AE%D8%B7%D8%A7%DB%8C-%D8%B9%D8%AF%D9%85-%D8%AA%D8%A7%D9%85%DB%8C%D9%86-%D9%85%D9%87%D8%A7%D8%B1-%D8%AC%D8%A7%D9%86%D8%A8%DB%8C-lbry/

  • مهندس علیرضا خویه
برای معرفی طول مهار تیر به صورت نقطه‌ای در مکان‌های دلخواه، ابتدا تیر مورد نظر را انتخاب و از مسیر Design menu > Steel Frame Design > Lateral Bracing اقدام نموده تا پنجره Lateral Bracing ظاهر شود. گزینه User Specified را انتخاب و بر روی دکمه Specify Point Bracing کلیک نمایید. در بخش Location مکان مهار جانبی را مشخص کنید. اگر گزینه Relative … را انتخاب کرده باشید باید بصورت نسبی از انتهای I عضو طول مهار نشده را بصورت نسبی از طول کل آن وارد نمایید (مثلا اگر وسط تیر قرار دارد عدد 0.5 را باید وارد نمایید) همچنین در صورتی که گزینه Absolute… فعال باشد، باید مکان مهار جانبی را بصورت مطلق از انتهای I عضو وارد نمایید. در بخش type مشخص می‌کنید که مهار جانبی برای بال بالا Top یا پایین Bot یا هر دو All است.
  • مهندس علیرضا خویه

اتصال بال به جان در تیر ورق‌ها طبق بند 10-2-5-13 بخش پ-2، باید بر مبنای برش افقی ناشی از تغییرات لنگر تیر طراحی شود. در واقع بایستی جریان برش ایجاد شده بین بال و جان را با استفاده از رابطه معروف q=VQ/I تعیین و ملاک طراحی جوش قرار دهید. برای اتصال جان به ورق سخت کننده نیز به همین صورت، بایستی جریان برش ایجاد شده در محل اتصال ورق به جان ملاک طراحی جوش آن قرار گیرد. برای این منظور می‌توان جریان برش را از تقسیم نیروی برشی تیر در محل سخت کننده بر مساحت مقطع ورق تعیین نمود. اگر هدف طراحی جوش سخت کننده در تیر پیوند باشد، نیروی طراحی جوش سخت کننده به بال برابر 0.25FyAst و برای طراحی جوش سخت کننده با جان، نیرویی به میزان FyAst را ملاک قرار می‌دهیم. این مورد در بند 10-3-12-10-1 مبحث دهم ذکر شده است. در این روابط Fy تنش تسلیم فولاد سخت کننده و Ast سطح مقطع عرضی هر یک از سخت کننده‌ها است.

  • مهندس علیرضا خویه

در حالتی که یک عضو فشاری دچار ناپایداری کلی شود (از کمانش‌های موضعی جلوگیری شده باشد)، سه حالت کلی ممکن است ایجاد شود.
کمانش خمشی: در این حالت کمانش کلی ، حول محور ضعیف عضو ایجاد می‌شود.
کمانش پیچشی: این حالت کمانشی در وضعیتی که مقاومت پیچشی مقطع با تقارن دوبل، حول محور طولی آن ناچیز باشد، رخ می‌دهد. مقاطع گرم نورد شده موجود معمولاً در معرض این حالت کمانشی نیستند. لیکن مقاطع ساخته شده از ورق (مخصوصاً در حالتی که ضخامت ورق‌ها ناچیز باشد) بایستی برای این حالت کمانشی کنترل شوند. مقدار ضریب طول موثر پیچشی Kz باید برابر فاصله نقاط عطف پیچش عضو در نظر گرفته شود که برای مقاطع فشاری معمولی این مقدار یک است، مگر اینکه شرایط مرزی عضو مقدار دیگری را توجیه کند.
کمانش خمشی- پیچشی: این حالت کمانش در واقعی ترکیبی از دو حالت قبل است، عضو علاوه بر کمانش کلی و خمش حول محور ضعیف خود، حول محور طولی خودش نیز دچار کمانش می‌شود. مقاطع با یک محور تقارن، مانند نبشی‌ها، سپری‌ها و ناودانی‌ها در معرض این حالت کمانشی قرار دارند.

  • مهندس علیرضا خویه

 طبق ACI318-14 تعریفی که برای قاب بدون حرکت جانبی (nonsway frames) دارد، بصورت زیر است:


6.6.4.3 It shall be permitted to analyze columns and stories in structures as nonsway frames if (a) or (b) is satisfed:
(a) The increase in column end moments due to second order effects does not exceed 5 percent of the first-order
end moments
(b) Q in accordance with 6.6.4.4.1 does not exceed 0.05
6.6.4.4 Stability properties
6.6.4.4.1 The stability index for a story, Q, shall be calculated by:
Q=(ΣP∆/Vh)
where ∑P and V are the total factored vertical load and orizontal story shear, respectively, in the story being evaluated, and ∆ is the frst-order relative lateral deection between the top and the bottom of that story due to V.


در جدول 6.6.3.1.1(a) همین آیین‌نامه ضرایب ترک خوردگی بدون توجه به مهارشدگی یا مهار نشدگی قاب برای تیرها 0.35Ig، برای ستون‌های 0.7Ig، دیوارهای ترک نخورده 0.7Ig، دیوارهای ترک خورده 0.35Ig داده شده است. در جدول 6.6.3.1.1(b) هم روش دیگر برای محاسبه ضریب ترک خوردگی پیشنهاد شده که به نیروهای المان بستگی دارد. همچنین طبق بند زیر برای تحلیل سازه جهت کنترل تغییرشکل‌های آن می‌توان ضرایب ترک خوردگی را 1.4 مقادیر داده شده فوق در نظر گرفت.


6.6.3.2.2 It shall be permitted to calculate immediate lateral deections using a moment of inertia of 1.4 times I defned in 6.6.3.1, or using a more detailed analysis, but the value shall not exceed Ig.
R6.6.3.2.2 Analyses of deections, vibrations, and building periods are needed at various service (unfactored) load levels (Grossman 1987, 1990) to determine the performance of the structure in service. The moments of inertia of the structural members in the service load analyses should be representative of the degree of cracking at the various service load levels investigated. Unless a more accurate estimate of the degree of cracking at service load level is available, it is satisfactory to use 1.0/0.70 = 1.4 times the moments of inertia provided in 6.6.3.1, not to exceed Ig, for service load analyses.


از طرفی در بند دیگری از ACI داریم:


R6.3—Modeling assumptions
for braced frames, relative values of stiffness are important. A common assumption is to use 0.5Ig for beams and Ig for columns.
For sway frames, a realistic estimate of I is desirable and should be used if second-order analyses are performed. Guidance for the choice of I for this case is given in 6.6.3.1.


همانطور که دیده می‌شود، برای قاب مهار شده (قاب دارای دیوار برشی) اجازه داده شده مقادیر ممان اینرسی مقاطع تیرها 0.5 و برای ستون‌ها 1.0 در نظر گرفته شود. ولیکن برای قاب‌های دارای حرکت جانبی گفته شده از مقادیر جدول 6.6.3.1 استفاده شود. البته سازه‌ای که دیوار برشی داشته باشد، لزوماً بدون حرکت جانبی نیست و بایستی شاخص پایداری آن را کنترل نمود.
❗️ مبحث نهم در بند 9-16-3-2 نیز قید می‌کند برای ساختمان‌های کوتاه تا 4 طبقه در صورتی که مجموع سختی جانبی دیوارها بیشتر از شش برابر مجموع سختی جانبی ستون‌های طبقه باشد، آن طبقه را می‌توان مهار جانبی تلقی کرد.

  • مهندس علیرضا خویه