مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۷۷۶ مطلب توسط «مهندس علیرضا خویه» ثبت شده است

فروش فایل آماده ی پروژه ی بهسازی لرزه ای به همراه فایل های Etabs , SAP ,SAFE به همراه گزارش مفصل از روند انجام انجام پروژه

بهسازی سازه ی فولادی و بتنی بر اساس نشریه 360 و ASCE41-13

 

هزینه: 950هزار تومان

برای سفارش می توانید به شماره: ۰۹۳۸۲۹۰۴۸۰۰ پیامک دهید یا در تلگرام پیغام ارسال کنید.



  • مهندس علیرضا خویه

نرم افزارهای طراحی دکل

مهندس علیرضا خویه | | ۰ نظر

نرم افزارهای محاسبه و طراحی دکل مخابراتی

نرم افزارهای محاسبه و طراحی دکل مخابراتی:

  • RISATower (tnxTower): ساده ترین و در عین حال دقیق ترین نرم افزار کاربردی در زمینه طراحی انواع دکل مخابراتی که دارای محیط گرافیکی و کاربرپسند است. دیتابیس بسیار قوی و کارآمد این برنامه فرآیند مدلسازی و همچنین اعمال بارهای وارده و همچنین کنترل سازه را مطابق با استانداردهای امریکایی و کانادایی به خوبی میسر ساخته است. این با ارتباطی که با سایر نرم افزارها برقرار میکند امکان کنترل فونداسیون و کابل را نیز در خود دارد
  • MS Tower : نرم افزار حرفه­ ای با قابلیت کد نویسی جهت طراحی انواع دکلهای مخابراتی و خطوط انتقال نیرو است. محیط کاربری حرفه ای دارد و امکان مدلسازی انواع آنتن و جزئیات را دارد. این نرم افزار که توسط شرکت Bentley توسعه داده شده است
  • ASMTower : این نرم افزار از سال ۲۰۱۸ وارد بازار نرم افزارهای رقابتی مدلسازی و طراحی دکلهای مخابراتی شده است. در این نرم افزار قالیت نمایش گرافیکی آنتن ها، فیدرها و لدر و .. را دارد. همچنین با این نرم افزار امکان طراحی فونداسیون و اتصالات بوده و در انتها قابلیت خروجی به نرم افزار Teckla جهت تهیه نقشه های شاپ در ورژن خریداری شده وجود دارد.
  • Staad(X).Tower: از جمله نرم افزار های شرکت Bentley است که از محیط گرافیکی بالا و محیط کاربرپسندی برخوردار است. این برنامه فقط مخصوص طراحی دکلهای مخابراتی است
  • RF-/Tower : این نرم افزار که در واقع که افزونه است که به یکی از نرم افزارهای RFEM یا RSTAB وابسته به شرکت Dlubal امریکا افزوده شده و امکان مدلسازی، تحلیل و طراحی انکان دکلهای خرپایی (خوایستا) را فراهم میکند. همچنین این مجموعه نرم افزار با اضافه کردن افزوده های دیگر خود امکان مدلسازی و تحلیل دقیق انواع آنتن، پلتفرم ها و فیدر و سایر بخش ها را فراهم میکند
  • SAP2000 : نرم افزار جامع طراحی انواع سازه ها و حتی انواع دکل­ها با دقت بسیار بالا است که توسط شرکت CSI توسعه داده شده است. قالبهای پیش فرض این نرم افزار بابت مدلسازی محدود دکل مهاری و خرپایی (خود ایستا) مدلسازی را به نسبت راحت میکند ولی بارگذاری در آن نسبتا سخت است
  • مهندس علیرضا خویه

نرم افزار RISA Tower - tnxTower

مهندس علیرضا خویه | | ۰ نظر

ریساتاور (RISATower)

نرم افزار ریساتاور (RISATower)

نرم افزار ریساتاور (RISATower) که جزو نرم افزارهای زیر مجموعه شرکت ریسا (RISA) است، بصورت تخصصی و حرفه­ ای و با جدیدترین استانداردهای محاسبه و طراحی دکلهای مخابراتی امکان آنالیز و طراحی سازه دکل را فراهم می­ کند. این نرم­ افزار تا ورژن ۵٫۴ زیر مجموعه شرکت نرم افزار محبوب امریکایی RISA بوده است و پس از آن از ورژن ۶ به بعد شرکت tnx حق بهره برداری آن را خرید و امروزه با نام تجاری tnxTower شناخته می شود و به فروش می رسد.

ویژگی­های نرم افزار RISATower

  • محیط گرافیکی و کاربر پسند که به سادگی و با طی چند مرحله امکان مدلسازی و آنالیز و طراحی را فراهم میکند
  • دارای دقت بالا و جزئیات فراوان در مدلسازی اجزای اصلی، متعلقات و آنتن ها و همچنین امکان اتوماتیک سازی همه بخش ها
  • امکان طراحی انواع دکلهای خود ایستا، مونوپل و مهاری و با انواع شکل هندسی استاندارد و رایج در دنیا
  • دارای ضوابط استانداردهای طراحی دکلهای مخابراتی و متناسب با ضوابط طراحی سازه های فولادی امریکا
  • خروجی گرافیکی و همچنین تهیه دفترچه محاسباتی کامل از ورودی ها و نتایج آنالیز و طراحی در قالب فایل MS Word
  • دارای پایگاه داده بسیار قوی از انواع مصالح، پروفیلهای پر کاربرد، انواع آنتن­ها و اجزای متعلقات رایج در دنیا

این نرم افزار استاندارد محاسبه و طراحی دکل­های مخابراتی TIA/EIA-222 را در پایگاه داده خود دارد. که در آن از ورژن RS-222 به تاریخ ۱۹۵۹ تا ورژن ANSI/TIA-222-G به تاریخ ۲۰۰۵ را می توان انتخاب نمود. رایج ترین استاندارد مورد استفاده در ایران ورژن F است. کنترل طراحی المانهای فولادی با استفاده از استاندارد AISC صورت میگیرد که در ورژن F بر اساس روش تنش مجاز (ASD) است و از ورژن G به روش ضرایب بار و مقاومت (LRFD) تغییر یافته است.

نرم افزار ریسا تاور انواع دکلهای ۳ و یا ۴ پایه خود ایستا (Self-Support)، مهاری (Guy-Mast) و یا تک پایه مونوپل را مدلسازی، بارگذاری و طراحی می کند. دقت مدلسازی این نرم افزار شامل در نظر گرفتن همه زوایای باد، انواع آنتن­ ها، انواع متعلقات، اتصالات و پیچ و مهره ها، خروج از مرکزیت­های اعضا از ویژگی منحصر به فرد آن است. ارتباط این نرم افزار با نرم افزار Risa-3D که از جمله نرم افزار های زیر مجموعه شرکت Risa است، توانایی و قابلیت گسترده ای را به این نرم افزار افزوده است.

  • مهندس علیرضا خویه

آموزش خصوصی اتوکد

مدرس: مهندس علیرضا خویه

تماس: 09382904800

آموزش خصوصی اتوکد AutoCAD در تهران مدرس اتوکد تدریس اتوکد کلاس خصوصی اتوکد

آموزش خصوصی اتوکد AutoCAD در تهران مدرس اتوکد تدریس اتوکد کلاس خصوصی اتوکد

  • مهندس علیرضا خویه

نکات مهم راه پله

مهندس علیرضا خویه | | ۰ نظر

پله یکی از اجزای بسیار جالب و مهم ساختمان است. در طول عمر یک ساختمان میان و یا بلند مرتبه و در شرایط عادی بهره برداری، پله کاربرد کمی دارد.
اما در شرایط بحرانی مانند آتش سوزی، زلزله و مانند آن مهمترین بخش ساختمان است که بایستی توانایی خدمت دهی به ساکنین را داشته باشد.

برای "بهبود عملکرد پله" می توان موارد سازه ایی و غیر سازه ایی را که درادامه به آنها اشاره شده مد نظر قرار داد.

1- کاربرد مصالح بنایی سنتی مانند کف و پیشانی پله نه تنها کمکی به کارکرد این بخش مهم ساختمان نمی کند، بلکه ممکن است باعث شود در شرایط بحرانی مانند زلزله این بخش مهم عملکرد خود را از دست بدهد.

نمونه هایی از خرابی غیر سازه ایی پله در زلزله 21 آذر 1396 ازگله-سرپل ذهاب.

بنابراین تا حد امکان بایستی اجزای سازه ایی دستگاه پله را به صورت نمایان (اکسپوز) به کار برد. این کار علاوه بر کاهش هزینه های ساخت، خرابی پیش بینی نشده و تشکیل آوار در شرایط زلزله را کاهش می دهد.

برای نمونه اگر از بتن نمایان (اکسپوز) برای کف و سقف دستگاه پله به کار برده شود، خرابی و آوار ناشی از سنگ کف و پیشانی پله و همچنین ریزش پلاستر سقف در هنگام زلزله وجود نخواهد داشت.

نمونه ایی از یک دستگاه پله در یک ساختمان مسکونی در شهر سیدنی استرالیا که در داخل هسته بتنی ساختمان و به صورت نمایان (اکسپوز) اجرا شده

(استرالیا یک کشوربا لرزه خیزی بسیار کم است و این عکس ها فقط برای نشان دادن روش اجرا می باشد)

2- در نظر گرفتن جزییات مناسب برای دیواره های دستگاه پله به صورتی که در شرایط زلزله میزان آوار ناشی از آسیب دیدگی این دیوارها کمینه باشد. برای نمونه حذف قرنیز و آستر بنایی و استفاده از پوشش های نوین.

آسیب به دیوار های اطراف دستگاه پله در زلزله 21 آبان 1396 ازگله-سرپل ذهاب

3- در نظر گرفتن الزامات آتش و دود به صورت بسیار دقیق و سخت گیرانه.

4- بررسی عملکرد لرزه ایی دیوارهای اطراف قفسه پله و دادن راهکارهایی مانند جداسازی میانقاب ها از سازه و مانند آن. این مورد ممکن است با الزامات آتش و دود در تضاد باشد و بنابراین باید به دقت جزییات آن بررسی شود.

5- در صورتی که در اطراف قفسه پله مهاربند فولادی به کار برده شود احتمال کمانش خارج از صفحه مهاربند و بسته شدن بخشی از مسیر پله در هنگام زلزله وجود دارد. در نظر گرفتن جزییاتی برای مهاربند که تضمین کننده کمانش داخل صفحه باشد ممکن است به عنوان راه حل در نظر گرفته شود.

6- مدلسازی راه پله در مدل سازه ایی و لحاظ کردن اندرکنش پله و سایر قسمت های سازه.
7- طراحی دقیق راه پله و در نظر گرفتن جزییات خاص برای عملکرد لرزه ایی مانند تکیه گاه های غلتکی

  • مهندس علیرضا خویه

آموزش خصوصی اتوکد ۲۰۱۹

مهندس علیرضا خویه | | ۰ نظر

آموزش خصوصی اتوکد ۲۰۱۹

مقدماتی و پیشرفته 

به صورت پروژه محور و کاربردی

همراه با ارائه جزوه ی کامل و جامع و ضبط صدا و تصویر هنگام تدریس

 

مهندس علیرضا خویه

تماس 09382904800

  • مهندس علیرضا خویه

معرفی اجزا سوله

مهندس علیرضا خویه | | ۰ نظر

معرفی اجزا سوله

مشخصات اجزا سوله:

اجزا اصلی یک قاب فلزی پیش ساخته عمدتاً عبارتند از:

  • ستون (column)
  • رفتر والپست ( (wall post)
  • پرلین یا (z purlin)
  • تیر کرین (crane Beam)
  • میل مهار یا سگراد( anchor rode )
  • بولت (Bolt)

بادبند

  • سقفی و دورتادور (Brace)
  • کف ستون (Base plate)
  • قوطی( Box)
  • تیر (Beam)
  • آب چکان تکیه گاه جرثقیل یا براکت مراحل اجرای پروژه

طراحی براساس استاندارد توسط نرم افزار های اتوکد و SAP2000 ، بار برف ، باد ، زلزله و جرثقیل عوامل مهمی در طراحی سوله می باشند. ابعاد فنداسیون سوله ، ضخامت ورق و ابعاد ستون و رفتر سوله ، پوشش رنگ ، کفسازی و… در طراحی معین می گردند.

فاکتور های گوناگونی در قیمت ساخت سوله موثر می باشند که مهمترین آنها موقعیت، کاربری، دهانه و ارتفاع، وجود جرثقیل یا نیم طبقه و… می باشند.برآورد دقیق تناژ آهن مصرفی و محاسبه هزینه ساخت اسکلت سوله پس از تهیه نقشه شاپ سوله مشخص می شود.

مهندس علیرضا خویه، طراحی سوله

انجام طراحی و محاسبات سازه سوله با نرم افزار SAP2000، نقشه شاپ دراوینگ، طراحی معماری داخلی و خارجی سوله به صورت دوبعدی و سه بعدی

 

سوله

۱-ستون Column اصلی ترین عضو سوله در تحمل بار، برف ، باد ، زلزله، وزن سازه ، بارهای زنده و مرده است.

۲-فریم یا رفتر Frame این جزء از سوله انتقال دهنده بار زنده مرده سقف و بار برف به ستون است بار باد و زلزله نیز به ستونها و والپستها انتقال می یابد.

۳-لینک یا مهاربندی های طولی strut استوانی تقسیم کننده بارهای باد و زلزله در راستای طولی سازه نقش مهمی دارد.

۴-پولین یا زد z purlin ، پرلین ها که فرم خاص به صورت z شکل دارد انتقال دهنده بار زنده و مرده و برف به فریم ها است.

۵- سگواد یا مهار بند زد sagrod مهاربندهای سقفی تنظیم کننده دهانه و زاویه پرلین ها است.

۶-وال پست یا ستون باد wallpost والپستها در انتقال نیروی باد از فریم ها و مهار آن و نگه داشتن دیوارها در قاب ها اول و آخرسازه نقش مهمی دارد

۷- بادبند بدنه wall Braces انتقال دهنده نیروی باد از سقف و ستون به زمین و فنداسیون است

۸-بادبند سقف roof braces انتقال دهنده نیروی باد از طریق فریم ها است.

۹- سینه بند stay سینه بندها که اکثراً از نبشی استفاده می گردد در انتقال نیروهای وارده به پولین ها تاثیر دارد

۱۰- کلاف افقی رابط بین ستون های اصلی در قاب اول و آخر با وال پستها است.

۱۱- بالکن Cantilever Beam جهت جلوگیری از تابش نور مستقیم خورشید به کناره ها و انتقال باران و برف سقف استفاده می گردد.

۱۲- آبرو Rainfall انتقال دهنده آب باران و برف در مکان مورد نیاز است.

  • مهندس علیرضا خویه

اتصال WFP

اتصالات یکی از قسمتهای مهم یک سازه است که باعث می شود سازه رفتار شکلپذیری در برابر بارهای رفت و برگشتی داشته باشد، از این رو اگر سازهای بخواهد در برابر زلزلههای شدید رفتار مناسبی داشته باشد باید دارای اتصالات مناسبی باشد، مبحث دهم مقررات ملی، اتصالات گیردار از پیش تأیید شده را در شش رده به شرح جدول زیر تقسیم بندی میکند:

اتصالات گیردار از پیش تأیید شده:

ردیف نوع اتصال مخفف نوع سیستم سازهای قابل
کاربرد
۱ اتصال مستقیم تیر با مقطع کاهش یافته RBS قابهای خمشی متوسط و
ویژه
۲ اتصال فلنجی چهار پیچی بدون استفاده از ورق
لچکی
BUEEP قابهای خمشی متوسط و
ویژه
۳ اتصال فلنجی چهار یا هشت پیچی با استفاده از ورق
لچکی
BSEEP قابهای خمشی متوسط و
ویژه
۴ اتصال پیچی به کمک ورقهای روسری و زیرسری BFP قابهای خمشی متوسط و
ویژه
۵ اتصال جوشی به کمک ورقهای روسری و
زیرسری
WFP قابهای خمشی متوسط
۶ اتصال مستقیم تقویت نشدهی جوشی WUF-W قابهای خمشی متوسط و
ویژه

با توجه به جدول فوق اتصال گیردار جوشی به کمک ورقهای روسری و زیرسریWFPکه یک اتصال از پیش تأیید شده است، فقط در سیستم قاب خمشی متوسط قابل کاربرد است، این تحقیق عملکرد این نوع اتصال را به کمک تحلیلهای کامپیوتری بررسی و ارزیابی میکند.

اتصال کله گاوی – اتصال جوشی با ورق زیرسری و روسری WFP

اتصال WFP (اتصال گیردار با ورق روسری و زیرسری جوشی) یکی از اتصالات از پیش تایید شده مطابق بخش ۱۰-۳-۱۳ مبحث_دهم میباشد. در صورتی که بخواهیم از این نوع اتصالات_از_پیش_تاییدشده به عنوان اتصال گیردار در سیستم قاب_خمشی فولادی استفاده نماییم ، لازم است که کلیه الزامات مربوط به آنها را رعایت نماییم. هر گونه تغییر در جزییات پیشنهادی در این بخش ، باعث میشود که رفتار اتصال تغییر نماید و در این صورت باید برای تایید رفتار اتصال با شرایط جدید به مراجع معتبر مراجعه نموده و یا این اتصال مورد آزمایش های استاندارد قرار گیرد. در مورد اتصال WFP مطابق جزییات ارایه شده در بند ۱۰-۳-۱۳-۵ مبحث دهم مقررات ملی ساختمان ، بین تیر و ستون یک فاصله اجرایی وجود دارد و اتصال مستقیم تیر و ستون دیده نمیشود. پس بر این اساس در صورتی که بخواهیم از جزییات ارایه شده برای اتصالات WFP استفاده نماییم مجاز به جوش مستقیم تیر به ستون نمیباشیم.

در اتصال گیردار جوشی به کمک ورق‌های روسری و زیرسری (WFP) ورق‌های بالایی و پایینی اتصال توسط جوش به بال‌هایستون جوش شده و از طرف دیگر به بال‌های تیر توسط جوش متصل می‌شوند. اتصال ورق به بال ستون توسط جوش نفوذی کامل (CJP) و به بال تیر توسط جوش گوشه صورت می‌گیرد. اتصال جان تیر به بال ستون توسط یک یا دو ورق که از یک طرف به جان تیر جوش و از طرف دیگر به بال ستون جوش شده ایجاد می‌شود. این اتصال را می‌توان فقط در قاب خمشی با شکل‌پذیری متوسط استفاده نمود. در کل استفاده از این اتصال به اعتقاد بسیاری از اساتید فن نهی شده است. این اتصال در AISC وجود ندارد و الزامات آن توسط مبحث دهم داده شده است. محدودیت‌های این اتصال بصورت زیر می‌باشند.
محدودیت‌های مربوط به تیر

  •  در دو انتهای تیر تعبیه سوراخ دسترسی برای انجام جوشکاری مجاز نمی‌باشد.
  •  در دو انتهای تیر، ناحیه حفاظت شده باید برابر فاصله از بر ستون تا انتهای ورق‌های روسری و زیرسری (هر کدام که بزرگتر است) بعلاوه نصف عمق تیر بعد از آن، در نظر گرفته شود.
  •  محل مفصل پلاستیک (Sh) در روی تیر باید در محل انتهای ورق‌های روسری و زیرسری (هر کدام که بزرگتر است)، در نظر گرفته شود.
  •  عمق مقطع تیر نباید از ۹۰ سانتیمتر تجاوز نماید.
  •  ضخامت بال تیر نبایستی از ۳۰ میلیمتر تجاوز نماید.
  •  نسبت دهانه آزاد تیر به عمق مقطع آن نباید از ۵ کمتر در نظر گرفته شود.

مطابق با مبحث دهم مقررات ملی ساختمان ایران، اتصالات گیردار از پیش تأیید شده تیر به ستون در سازه های فولادی به شش رده تقسیم‌بندی می‌شوند. یکی از این اتصالات، اتصال‌گیردار جوشی به کمک ورق‌های روسری و زیرسری (WFP) است. مبحث دهم استفاده‌ی از این نوع اتصال را به قاب‌ خمشی متوسط محدود می‌کند.این درحالی است که پنج نوع اتصال پیشنهادی دیگر علاوه برقاب خمشی متوسط ، قابلیت استفاده در قاب خمشی ویژه را دارا می باشند. این نوع اتصال در زمره اتصالات پیشنهادی AISC قرار ندارد، ولی مبحث دهم به دلیل کاربرد گسترده این اتصال در ایران به دلیل سهولت اجرا آنرا پیشنهاد داده است.

این اتصال مشابه اتصال BFPمی باشد با این تفاوت که اتصال ورق های روسری و زیر سری به بال تیر، بجای پیچ با جوش صورت می گیرد. در طراحی سازه های فولادی فرض بر این است که تقدم شکل گیری مفاصل پلاستیک در تیرها باشد اما تلاش بر این است که که ایجاد مفاصل خارج از ناحیه اتصال باشد. برای دستیابی به این موضوع با استفاده از ورق های زیرسری و روسری ضخامت بال در ناحیه اتصال افزایش یافته و با افزایش سختی مفصل پلاستیک به نقاط با سختی کمتر هدایت می شود.

در اتصالات از پیش تایید شده زیر ، جوش مستقیم تیر به ستون انجام میشود:
اتصال گیردار مستقیم تیر با مقطع کاهش یافته ( #RBS )
اتصال گیردار فلنجی بدون استفاده از ورق لچکی ( #BUEEP ) و اتصال گیردار فلنجی چهار یا هشت پیچی با استفاده از ورق لچکی ( #BSEEP )
اتصال گیردار تقویت نشده جوشی ( WUF-W )

در اتصال گیردار جوشی با ورق زیرسری و روسری WFP  ورق فوقانی کله گاوی جوش کامل باید شود

در تصویر فوق در اتصال گیردار جلویی ورق فوقانی کله گاوی جوش کامل شده است که صحیح است ولی در اتصال پشت بخشی از ورق فوقانی کله گاوی جوش نشده است که غلط است

ساخت ورق روسری (ورق کله گاوی) برای اجرای اتصال گیردار.

در اتصال گیردار جوشی به کمک ورق‌های روسری و زیرسری (WFP) ورق‌های بالایی و پایینی اتصال توسط جوش به بال‌هایستون جوش شده و از طرف دیگر به بال‌های تیر توسط جوش متصل می‌شوند. عرض ورق زیرسری (bpb) بر اساس عرض بال تیر (bbf) تعیین می‌شود. به طوریکه فضای کافی برای جوش داشته باشیم:
Bpb=Bbf+5cm
ضخامت ورق زیرسری (tpb) براساس نیروی کششی ناشی از لنگر متحمل ایجاد شده در محل مفصل پلاستیک طراحی می‌شود. عرض قسمت باریکتر ورق روسری براساس عرض بال تیر (bbf) تعیین می‌شود.
B2pt=Bbf-5cm
ضخامت ورق روسری (tpt) بصورت براساس مساحت ورق بالا تعیین می‌شود. به سبب اینکه ورق بالایی کمتر است، برای جبران کاهش مساحت ایجاد شده، طبیعتاً بایستی ضخامت بیشتری داشته باشد تا همان لنگر را بتواند تحمل کند.

سوراخ دسترسی

در اتصالات گیردار پیچی و جوشی مشاهده می شود که دو سوراخ در قسمت بالا و پایین جان تیر به علت دسترسی برای جوش بهتر و ایجاد تنش سه محوره ایجاد می شود.

ایجاد سوراخ دسترسی برای اتصالات مستقیم تیر به ستون (مثل اتصال WUF-W) استفاده می‌شود. وجود تنش سه محوره می‌تواند منجر به شکست ترد قطعه شود. اولین نوع این خرابی‌‌ها در حین جنگ جهانی دوم مشاهده شد که برخی از کشتی‌‌ها دچار خرابی‌‌های فجیعی شدند. می‌دانیم که تسلیم در فولاد هنگامی رخ می‌دهد که لغزش در صفحات آن ایجاد شود. این لغزش صفحات با زاویه ۴۵ درجه رخ می‌دهند. بنابراین بایستی فضای کافی برای لغزش این صفحات وجود داشته باشد. وقتی که تنش کششی به حد تسلیم برسد لغزش رخ داده و اولین تسلیم رخ ایجاد می‌شود. به همین ترتیب لغزش در هزاران صفحه دیگر رخ داده و قطعه شکل پذیری خوبی از خود نشان می‌دهد. در صورتی که یک قطعه تحت کشش محوری باشد، به سبب نسبت پواسون به طول آن اضافه و از ابعاد دیگر آن کاسته می‌شود. در صورتی که به هر علت از کاهش طول ابعاد دیگر جلوگیری شده باشد، منجر به تولید تنش‌های سه محوری در آن شده و تردشکنی رخ می‌دهد.
به عبارتی وقتی بال بالا یا پایین تحت کشش قرار گرفته و تمایل به کاهش ضخامت در آن وجود دارد، در صورتی که جان زیر آن وجود داشته باشد، اجازه کاهش ضخامت به بال داده نشده و تنش سه محوره ایجاد خواهد شد.
مقدار گپ برای اتصالات BFP و WFP در حدود ۱٫۵ تا ۲ سانتیمتر پیشنهاد می‌شود. برای برخی دیگر از اتصالات گیردار تیر بهستون گپی وجود ندارد.

عملکرد اتصالات گیردار قبلا توسط آزمایش‌های تجربی مورد تایید قرار گرفته است. در اتصال گیردار جوشی به کمک ورق‌های روسری و زیرسری (WFP) ورق‌های بالایی و پایینی اتصال توسط جوش به بال‌های ستون جوش شده و از طرف دیگر به بال‌های تیر توسط جوش متصل می‌شوند. این اتصال را می‌توان فقط در قاب خمشی با شکل‌پذیری متوسط استفاده نمود. این اتصال در AISC وجود ندارد و الزامات آن توسط مبحث دهم داده شده است. بطور کلی اگرچه محل مفصل پلاستیک با فاصله از ستون قرار دارد، لیکن اگر این اتصال را طراحی کرده باشید، به ابعاد خیلی بزرگی برای ورق‌های روسری و زیرسری (بخصوص برای ورق روسری) خواهید رسید و عملکرد ضعیف‌تر آنها در دوران‌های بالا بصورت آزمایشی مورد اثبات قرار گرفته است. یکی از ایرادات وارد بر این اتصال به غیر از شکل ورق فوقانی که باید بر روی بال جهت اجرای جوش عرض کمتری داشته باشد، نحوه اجرای این اتصال است که تمام جوشکاری ورق‌ها به تیر باید در کارگاه صورت گیرد که این خود باعث عدم اجرا مناسب این جوش‌ها و در نهایت ضعف در آن خواهد شد.

اتصال گیردار مستقیم تقویت نشده جوشی (WUF-W)

در اتصال گیردار مستقیم تقویت نشده جوشی (WUF-W) عمده دوران خمیری در تیر و در بَر ستون ایجاد می‌شود. حالت‌های شکست نامطلوب، توسط جزئیات مناسبی که برای اتصال جوش بال تیر به بال ستون داده می‌شود، کنترل می‌گردد. این اتصال را می‌توان در قاب خمشی با شکل‌پذیری ویژه و متوسط استفاده نمود. محل مفصل پلاستیک (Sh) در روی تیر باید در محل بَر ستوندر نظر گرفته شود (Sh=0). لیکن در داخل تیر و بر روی بال‌های فوقانی و تحتانی آن ایجاد می‌شود. از جمله جزئیات اصلاحی این اتصال که در آیین‌نامه‌های جدید بر روی آن تاکیده شده، اجرای سوراخ دسترسی زیر بال بالا و روی بال پایین بوده که مانع ایجاد تنش‌های سه محوری در این اتصال می‌شود. اجرای جوش نفوذی بال‌ها به ستون در کارگاه از ایردات وارد بر این اتصال است که می‌توان با اتصال درختی بر این مشکل غلبه نمود.

  • مهندس علیرضا خویه

شناژ فونداسیون

مهندس علیرضا خویه | | ۰ نظر

شناژ فونداسیون

کلاف­های رابط ( شناژ ها) در فونداسیون

شن به زبان فرانسه به معنای زنجیر و شناژ به معنی زنجیر کردن می باشد.

در مهندسی عمران، مهار کردن یا دوختن قسمت های مختلف یک سازه به یکدیگر به منظور یکپارچه عمل کردن آن ها را شناژ می گویند.


شناژ یک المان محوری است که برای اتصال پی های منفرد به منظور تحمل کشش و جلوگیری از حرکت افقی احتمالی انها طرح و اجرا می گردد.
در سازه های ساختمانی و صنعتی دهه های اخیر، درفونداسیون ها از شناژ (کلاف) به عنوان عاملی برای اتصال پی های منفرد به یکدیگر به منظور یکپارچه عمل کردن کل پی استفاده شده است. بدیهی است در صورت مجزا بودن پی ها از یکدیگر، امکان حرکت نسبی آنها تحت شرایط بارگذاری مختلف وجود داشته و عمکرد سازه تحت تاثیر قرار خواهد گرفت.

این قسمت از ساختمان از روی کرسی چینی و معمولاً در یک تراز ساخته می شود برای متصل کردن کلیه ی پی ها به همدیگر ایجاد می گردد در اثر وجود شناژ کلیه قسمت های ساختمان بطور یکپارچه عمل نموده و کلیه ی نشست ها یکنواخت بوده و نیروهای وارده ی اتفاقی ( مانند زمین لرزه و باد ) به یک نقطه ساختمان به تمام قسمت های ساختمان منتقل گشته ، در نتیجه از شدت نیروی وارده در یک نقطه کاسته شده و مانع خرابی ساختمان می گردد.

معمولاً شناژهای افقی را روی کرسی چینی در طبقه ی همکف اجرا می نمایند ولی گاهی اوقات نیز در طبقات ، زیر هر سقف روی کلیه ی دیوارها شناژ اجرا می گرددو این شناژهای افقی که در پایین و بالای دیوار ساخته می شود بوسیله شناژهای عمودی در چند نقطه به یکدیگر متصل می گردد. اجراء شناژ افقی و عمودی در ناحیه های زلزله خیز مانند ایران الزامی می باشد زیرا این شناژ ها به نسبت قابل ملاحظه ای از شدت خرابی ها ی وارده می کاهد. 

بتن ریزی فونداسیون
استفاده از پی­ های منفرد در فونداسیون­ها بسیار رایج می­باشد. در بیشتر ساختمان­های کوتاه و یا ساختمان­های صنعتی (سوله ­ها و خرپاها) از پی منفرد استفاده می­شود. در برخی موارد نیز پی­های نواری و یا گسترده یک ساختمان به صورت جدا از هم طراحی می­شوند. در هر حالت در صورت جدا بودن پی­های یک ساختمان امکان حرکت نسبی پی­ها نسبت به یکدیگر وجود دارد که این امر در زلزله رفتار نامناسبی در سازه ایجاد خواهد کرد. به عبارتی در صورت جدا بودن پی­ها از هم امکان حرکت نسبی آنها در زمان زلزله در جهات مختلف وجود داشته و سازه در قسمت اتصال به زمین به صورت پیوسته عمل نخواهد کرد.

فونداسیون منفرد و شناژ

طبق بند ۹-۱۷-۷ مبحث ۹ مقررات ملی ساختمان الزاما باید حرکت نسبی پی­ها محدود گردد. یکی از رایج­ترین روش­ها در محدودکردن حرکت نسبی پی­ها استفاده از کلاف­های رابط و یا همان شناژها می­باشد. پی­های مجزا از هم باید با شناژهایی در دو جهت (که ترجیحاً نسبت به هم عمود هستند) مهار شوند به نحوی که شناژ مانع حرکت دو پی نسبت به هم گردند.

در بسیاری موارد مهندسین به اشتباه هدف از اجرای شناژ را محدو کردن نشست نامتقارن در پی­ها ۵می­دانند. در هر حالت ممکن است شناژ در کم­کردن نشست نامتقارن عملکرد داشته باشد و لکن طراحی پی منفرد بدون در نظر گرفتن شناژ بوده و در زمان طراحی مهندسین محاسب، نشست پی منفرد را بدون در نظر گرفتن شناژ، در محدوه مجاز محدود می­کنند. لذا باید توجه نمود که مهندسین محاسب در طراحی فونداسیون­های جدا از هم، شناژها را در مدل تحلیلی پی (در نرم افزار) در نظر نگرفته و آنرا در نرم­افزار مدلسازی نکنند.

طبق بند ۹-۱۷-۷-۳ مبحث ۹ مقررات ملی ساختمان ابعاد شناژ متناسب با ابعاد پی و حداقل ۳۰۰ میلی­متر در نظر گرفته می­شود و الزاماً سطح فوقانی شناژ باید با سطح فوقانی پی یکسان باشد. در بسیاری از موارد برای سرعت بخشیدن به عملیات اجرای پی، کل سطح زمین خاکبرداری می­شود و سپس قالب­بندی روی زمین اجرا می­شود؛ در این حالت ایجاد سطح فوقانی یکسان بین شناژ و پی که دارای دو عمق متفاوت هستند امکان­پذیر نمی­باشد. در این حالت محاسبین یا ارتفاع شناژ را در جهت اطمینان برابر ارتفاع فونداسیون در نظر گرفته و یا زیر شناژها باید بسترسازی صورت گیرد که می­توان زیر شناژها را با خاک نرم نیز پر نمود.

در صورتی که فونداسیون­ها به شکل مناسبی داخل زمین اتصال داده شوند که حرکت نسبی آنها محدود شود، می­توان شناژ را اجرا نکرد. عدم اجرای شناژها صرفاً در موارد زیر مجاز شناخته می­شود:

۱- در ساختمان­های یک طبقه که دارای دهانه بزرگ هستند مانند ساختمان­های صنعتی، آشیانه ­ها و غیره به شرط آنکه عمق استقرار پی پایداری کافی در برابر نیروهای جانبی داشته باشد، می­توان از قراردادن کلاف در امتداد دهانه قاب صرف نظر کرد. در این حالت خاکریز اطراف پی بعدا به خوبی کوبیده و متراکم شود.

۲- به کارگیری شمع در زیر پی­های جدا از هم به نحوی که محاسبات نشان دهد که حرکت نسبی پی محدود شده است.

۳- اجرای ستون پایه­ ها (پدستال­ها) و ایجاد فشار خاک برروی آنها به نحوی که بتوانند حرکت نسبی پی را محدود کنند.

نکات نهایی درباره شناژها

  • قبل از اجرای کلاف‌بندی، باید تمام مراحل و متریال‌های مورد استفاده با حضور مهندس ناظر بررسی و تایید شوند.
  • عبور لوله در شناژ، یک کار غیراصولی و غیراستاندارد است و قطعا این موضوع باعث توقف پروسه‌ی ساخت و ساز توسط نهادهای نظارتی می‌شود.
  • حداقل فاصله‌ی بین شناژهای قائم ۵ متر و در شناژهای افقی ۴ متر است.
  • بتن ریزی باید به صورتی انجام شود که مواد بتن، فضای داخل میلگردهای شناژ را به صورت کامل پر کند.
  • قبل از آرماتوربندی شناژ، قالب آن باید توسط مهندس ناظر تایید گردد و میزان بتن مورد نیاز برای استحکام شناژ مشخص شود

فونداسیون منفرد و شناژ

 برچسب ها
  • مهندس علیرضا خویه

اتصال WFP

اتصالات یکی از قسمتهای مهم یک سازه است که باعث می شود سازه رفتار شکلپذیری در برابر بارهای رفت و برگشتی داشته باشد، از این رو اگر سازهای بخواهد در برابر زلزلههای شدید رفتار مناسبی داشته باشد باید دارای اتصالات مناسبی باشد، مبحث دهم مقررات ملی، اتصالات گیردار از پیش تأیید شده را در شش رده به شرح جدول زیر تقسیم بندی میکند:

اتصالات گیردار از پیش تأیید شده:

ردیف نوع اتصال مخفف نوع سیستم سازهای قابل
کاربرد
۱ اتصال مستقیم تیر با مقطع کاهش یافته RBS قابهای خمشی متوسط و
ویژه
۲ اتصال فلنجی چهار پیچی بدون استفاده از ورق
لچکی
BUEEP قابهای خمشی متوسط و
ویژه
۳ اتصال فلنجی چهار یا هشت پیچی با استفاده از ورق
لچکی
BSEEP قابهای خمشی متوسط و
ویژه
۴ اتصال پیچی به کمک ورقهای روسری و زیرسری BFP قابهای خمشی متوسط و
ویژه
۵ اتصال جوشی به کمک ورقهای روسری و
زیرسری
WFP قابهای خمشی متوسط
۶ اتصال مستقیم تقویت نشدهی جوشی WUF-W قابهای خمشی متوسط و
ویژه

با توجه به جدول فوق اتصال گیردار جوشی به کمک ورقهای روسری و زیرسریWFPکه یک اتصال از پیش تأیید شده است، فقط در سیستم قاب خمشی متوسط قابل کاربرد است، این تحقیق عملکرد این نوع اتصال را به کمک تحلیلهای کامپیوتری بررسی و ارزیابی میکند.

اتصال کله گاوی – اتصال جوشی با ورق زیرسری و روسری WFP

اتصال WFP (اتصال گیردار با ورق روسری و زیرسری جوشی) یکی از اتصالات از پیش تایید شده مطابق بخش ۱۰-۳-۱۳ مبحث_دهم میباشد. در صورتی که بخواهیم از این نوع اتصالات_از_پیش_تاییدشده به عنوان اتصال گیردار در سیستم قاب_خمشی فولادی استفاده نماییم ، لازم است که کلیه الزامات مربوط به آنها را رعایت نماییم. هر گونه تغییر در جزییات پیشنهادی در این بخش ، باعث میشود که رفتار اتصال تغییر نماید و در این صورت باید برای تایید رفتار اتصال با شرایط جدید به مراجع معتبر مراجعه نموده و یا این اتصال مورد آزمایش های استاندارد قرار گیرد. در مورد اتصال WFP مطابق جزییات ارایه شده در بند ۱۰-۳-۱۳-۵ مبحث دهم مقررات ملی ساختمان ، بین تیر و ستون یک فاصله اجرایی وجود دارد و اتصال مستقیم تیر و ستون دیده نمیشود. پس بر این اساس در صورتی که بخواهیم از جزییات ارایه شده برای اتصالات WFP استفاده نماییم مجاز به جوش مستقیم تیر به ستون نمیباشیم.

مطابق با مبحث دهم مقررات ملی ساختمان ایران، اتصالات گیردار از پیش تأیید شده تیر به ستون در سازه های فولادی به شش رده تقسیم‌بندی می‌شوند. یکی از این اتصالات، اتصال‌گیردار جوشی به کمک ورق‌های روسری و زیرسری (WFP) است. مبحث دهم استفاده‌ی از این نوع اتصال را به قاب‌ خمشی متوسط محدود می‌کند.این درحالی است که پنج نوع اتصال پیشنهادی دیگر علاوه برقاب خمشی متوسط ، قابلیت استفاده در قاب خمشی ویژه را دارا می باشند. این نوع اتصال در زمره اتصالات پیشنهادی AISC قرار ندارد، ولی مبحث دهم به دلیل کاربرد گسترده این اتصال در ایران به دلیل سهولت اجرا آنرا پیشنهاد داده است.

این اتصال مشابه اتصال BFPمی باشد با این تفاوت که اتصال ورق های روسری و زیر سری به بال تیر، بجای پیچ با جوش صورت می گیرد. در طراحی سازه های فولادی فرض بر این است که تقدم شکل گیری مفاصل پلاستیک در تیرها باشد اما تلاش بر این است که که ایجاد مفاصل خارج از ناحیه اتصال باشد. برای دستیابی به این موضوع با استفاده از ورق های زیرسری و روسری ضخامت بال در ناحیه اتصال افزایش یافته و با افزایش سختی مفصل پلاستیک به نقاط با سختی کمتر هدایت می شود.

در اتصالات از پیش تایید شده زیر ، جوش مستقیم تیر به ستون انجام میشود:
اتصال گیردار مستقیم تیر با مقطع کاهش یافته ( #RBS )
اتصال گیردار فلنجی بدون استفاده از ورق لچکی ( #BUEEP ) و اتصال گیردار فلنجی چهار یا هشت پیچی با استفاده از ورق لچکی ( #BSEEP )
اتصال گیردار تقویت نشده جوشی ( WUF-W )

  • مهندس علیرضا خویه