مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

معرفی سیستم سقف ها

مهندس علیرضا خویه | | ۰ نظر
سیستم سقف ها را بصورت خلاصه بشناسید
1-سقف طاق ضربی :
هرچند که این نوع سقف منسوخ شده است و دیگر مورد تایید ضوابط وآیین نامه ها نیست.سقف طاق ضربی به راحتی و با هزینه کم ساخته میشود.اما بدلیل وزن بالا و عملکرد بسیار ضعیف درهنگام زلزله ،سقف قابل اعتمادی نیست.
2-سقف تیرچه بلوک :
این نوع سقف یکی از رایج ترین انواع سقف به حساب می آید. اجزای تشکیل دهنده سقف تیرچه – بلوک شامل تیرچه ، بلوک پرکننده و بتن وآرماتورحرراتی وآرماتور تقویتی برش (اوتکا ) می باشد.
انواع تیرچه :
الف ) تیرچه پاشنه بتنی
ب) تیرچه فلزی با جان باز( کرمیت )
ج) تیرچه پیش تنیده ( اشپنیت )
د)تام تیرچه
انواع بلوک پرکننده:
الف ) بلوک پلی استایرن
ب) بلوک سفالی
ج) بلوک سیمانی
3-سقف کامپوزیت :
این نوع سقف صرفا در اسکلت فلزی قابل اجرا است. اجزای تشکیل دهنده آن شامل تیرها ی فرعی ( لانه زنبوری-پروفیل ) برشگیر ، بتن و آرماتورحرارتی می باشد. از آنجایی که برای اجرای سقف کامپوزیت به شمع بندی نیازی نیست این امکان وجود دارد که چند سقف به طور همزمان بتن ریزی نمود که تخته ها یا ورق های قالب بندی را نباید به هیچ وجه زودتر از زمان موعد باز کرد.
4-سقف عرشه فولادی :
این نوع سقف در سالهای اخیر رواج زیادی درساختمان سازی پیداکرده است.دلیل اصلی این اقبال خوب سازدگان و پیمانکاران ساختمانی ، سرعت بالای اجرای آن است.اجزای تشکیل دهنده سقف عرشه فولادی شامل تیرهای فرعی ، ورق گالوانیزه ذوزنقه ای ، گل میخ ، بتن و آرماتورحرراتی می باشد.
5-سقف دال بتنی :
این نوع سقف بدلیل وزن بالای آن و سرعت اجرای پایین و همچنین هزینه ی بیشتری که دارد کمتر مورد استفاده قرارمیگیرد.در برخی ساختمانها که از اهمیت بالایی برخوردارند.مثل ساختمانهای واقع در در نیروگاهها یا مراکز صنعتی بزرگ از سیستم سقف دال بتنی استفاده می شود. اجزای تشکیل دهند. این سقف آرماتور وبتن است.آنچه که درمورد سقف دال بتنی لازم به ذکر است اینست که دال اصولا به دودسته ی دال یک طرفه ودو طرفه تقسیم میشود.(سقف یوبوت نیز دراین گروه طبقه بندی میشود.)
6-سقف تیر دال :
این سقف شبیه به سقف کامپوزیت است با این تفاوت که تیرهای فرعی آن بتنی هستند. سقف تیر ودال در اسکلت بتنی بصورت درجا و در اسکلت فلزی بصورت پیش ساخته اجرا می شود.
7-سقف کوبیاکس :
این نوع سقف که به تازگی درصنعت ساختمان ایران وارد شده است از لحاظ سازه ای شبیه به دال دو طرفه است که البته تفاوت هایی با آن دارد. بدین ترتیب که درضخامت دال گوی های توخالی سبکی رابصورت منظم قرارمیدهند تا درواقع از معرف بتن برای پرکردن آن قسمت جلوگیری کنند. کاری که این گوی های تو خالی سبک انجام میدهند شبیه به کاری است که بلوک های پرکننده ( فوم ) در سقف تیرچه بلوک انجام می دهند. جنس این گوی ها پلی اتلین بازیافتی یا پلی پروتیین می باشد. سقف کوبیاکس به دلیل هزینه بالا و وقت گیر بودن تاکنون نتوانسته جایگاه مناسبی دربین سقف های سازه ای در صنعت ساختمان ایران پیدا کند.
8-سقف روفیکس :
این سقف درواقع همان سقف کامپوزیت است که بجای تخته یا ورق ( که بعنوان قالب استفاده می شوند) از یک صفحه فلزی مشبک با نام روفیکس بعنوان قالب ماندگار استفاده میشود. جنس روفیکس ورق گالوانیزه به ضخامت 7/. تا 0.8 میلیمتر است . همین مشبک بودن روفیکس موجب می شود بتن تازه به خوبی با آن درگیر شود و بدلیل ترکیب بتن و فلز مقاومت بدست آمده برای تحمل بارهای وارده به سقف قابل توجه خواهد بود. فاصله تیرهای فرعی تا حداکثر 80 سانتی مترمیتواند باشد چراکه بیشتراز آن باعث شکم دادن روفیکس درهنگام بتن ریزی خواهد شد.اجزای تشکیل دهنده این نوع سقف شامل روفیکس ، ارماتورو بتن می باشد.ساده بودن روش اجراو سرعت بالای کار از مزایای این سقف می باشد اما از انجا که روفیکس یک قالب ماندگار است جزء مصالح مصرفی سقف به حساب امده و در نتیجه هزینه آن را کمی بالا می برد.
9-سقف پیش تنیده :
این نوع سقف جدیترین سقفی است که وارد صنعت ساختمان ایران شده است. درسقف پیش تنیده با استفاده از کابل و چگونگی قرارگیری آن در دال بتنی سقف ، یک نیروی فشاری اولیه قبل از بهره برداری از سازه در ناحیه کششی دال بتنی ایجاد میکنند تا پس از بهره برداری از سازه این ناحیه کششی دچار ترک خوردگی نشود ودر نتیجه از حداکثر ظرفیت باربری بتن استفاده شودو به تبع آن ابعاد و دو اندازه ها کاهش یابد.یکی از مزایای اصلی استفاده از سقف پیش تنیده اینست که این امکان را فراهم می اورده تا سازه با تعداد ستون کمتری نسبت به سایر سقفها اجراشود این موضوع در بحث معماری ساختمان و همچنین تامین پارکینگ بسیار تاثیرگذار است.
  • مهندس علیرضا خویه

۱-روش های خطی
-تحلیل استاتیکی معادل
-دینامیکی طیفی
-دینامیکی تاریخچه زمانی

..............................................
 تحلیل استاتیکی خطی:

فرضیات اساسی روش تحلیل استاتیکی خطی عبارتند از :

1 ـ رفتار مصالح خطی است .

2 ـ بارهای ناشی از زلزله ثابت ( استاتیکی ) است .

3 ـ کل نیروی وارد بر سازه برابر ضریبی از وزن ساختمان است .

در این روش نیروی جانبی ناشی از زلزله طوری انتخاب می شود که برش پایه حاصل از آن برابر نیروی برش پایه مطابق روابط آیین نامه شود. مقدار برش پایه در این روش چنان انتخاب شده است که حداکثر تغییر شکل سازه با آنچه که در زلزله سطح خطر مورد نظر پیش بینی می شود مطابقت داشته باشد. چنانچه تحت اثر بار وارده، سازه به طور خطی رفتار کند، نیروهای بدست آمده برای اعضای سازه نیز نزدیک به مقادیر پیش بینی شده هنگام زلزله خواهند بود، ولی اگر سازه رفتار غیر خطی داشته باشد، نیروهای محاسبه شده از این طریق بیش از مقادیرجاری شدن مصالح خواهند بود.  به همین جهت هنگام بررسی معیارهای پذیرش نتایج حاصل از تحلیل خطی برای سازه هایی که هنگام زلزله رفتار غیر خطی دارند، اصلاح می گردد.

 


 

 تحلیل دینامیکی خطی:

تحلیل دینامیکی خطی می تواند به دو روش طیفی یا تاریخچه زمانی انجام شود. فرضیات خاص این روش در محدوده رفتار خطی عبارتند از :

1 ـ رفتار سازه را می توان بصورت ترکیبی خطی از حالت های مودهای ارتعاشی مختلف سازه که مستقل از یکدیگرند محاسبه نمود .

2 ـ زمان تناوب ارتعاشات سازه در هر مود در طول زلزله ثابت است .

در این روش ، مشابه روش تحلیل استاتیکی خطی، پاسخ سازه در زلزله سطح خطر مورد نظر در ضرایبی ضرب می شود تا حداکثر تغییر شکل سازه با آنچه که در زلزله پیش بینی می شود مطابقت داشته باشد. به همین علت نیروهای داخلی در سازه های شکل پذیر که در هنگام زلزله رفتار غیر خطی خواهند داشت بزرگتر از نیروهای قابل تحمل درسازه برآورد می شوند. به همین جهت هنگام بررسی معیارهای  پذیرش در نتایج حاصل از تحلیل خطی برای سازه هایی که هنگام زلزله رفتار غیر خطی دارند، اصلاح می گردد.  

 


 

روش تحلیل طیفی:

تعداد مودهای ارتعاشی در تحلیل طیفی چنان باید انتخاب شود که جمع درصد مشارکت جرم مؤثر برای هر امتداد تحریک زلزله در مودهای انتخاب شده حداقل 90% باشد . بعلاوه در هر امتداد، حداقل باید سه مود اول نوسان و حداقل تمام مودهایی که دارای زمان تناوب بیش از 4% ثانیه هستند در نظر گرفته شوند . طیف طرح مورد استفاده در این روش باید مطابق آیین نامه انتخاب شود .

نتایج حاصل از هر مود نوسان باید با روشهای آماری شناخته شده مانند جذر مربعات  SRSSروش ترکیب مربعی کامل (CQC) و یا روش‌های دقیق‌تر که اندرکنش بین مودها را دقیقتر درنظر می گیرد، انجام شود.

اثر زلزله در امتداد عمود بر امتداد مورد نظر در صورت لزوم باید در نظر گرفته شود .

 


 

 روش تحلیل تاریخچه زمانی:

در تحلیل تاریخچه زمانی ، پاسخ سازه با استفاده از روابط دینامیکی در گام های زمانی کوتاه محاسبه می شود. در این روش باید پاسخ سازه تحت تحریک شتاب زمین بر اساس حداقل سه شتاب نگاشت محاسبه شود. چنانچه کمتر از هفت شتابنگاشت برای تحلیل انتخاب شود باید بیشینه اثر آنها برای کنترل تغییر شکل‌ها و نیروهای داخلی منظور شود. چنانچه از هفت شتابنگاشت یا بیشتر استفاده شود می توان مقدار متوسط اثر آن‌ها را برای کنترل تغییر شکل‌ها و نیروهای داخلی در نظر گرفت.

  • مهندس علیرضا خویه

نکات تیر پیوند (تیر فیوز)

مهندس علیرضا خویه | | ۰ نظر
جزییات مهاربند واگرا که بایستی در طراحی نظارت و اجرا مد نظر قرار بگیرد:
تیر پیوند عضو پلاستیک هست پس هرگونه برشکاری و جوشکاری در ناحیه پیوند به جز سخت کننده جان ممنوع می باشد.
عضو مهاربندی و تیر خارج ناحیه پیوند باید برای حداکثر نیرو طراحی شود تا در طی زلزله در محدوده الاستیک باقی بماند.
از عدم کمانش ورق های اتصال باید اطمینان حاصل کرد.
دوران تیر پیوند باید کنترل شود.
سخت کننده های انتهایی باید دوبل (دو طرف تیر) اجرا شود.
سخت کننده میانی بایستی با دقت بالایی طراحی و اجرا شود.
از عدم چسبیدن بتن دال به جان تیر پیوند باید اطمینان حاصل کرد.
با دتایل مناسب بایستی از کمانش خارج محور تیر پیوند و تیر خارج پیوند جلوگیری کرد.
عضو مهاربندی از سمت تیر به اندازه کافی به تیر نزدیک شود تا ورق اتصال کمانش نکند.
  • مهندس علیرضا خویه

مش بندی Mesh سقف

مهندس علیرضا خویه | | ۰ نظر
مشبندی را می‌توانید به دو صورت انجام دهید. یا از همین روش که فرمودین بصورت دستی با انتخاب سقف و استفاده از مسیر Edit menu > Edit Shells > Divide Shells آن را مشبندی کنید. در کادر ظاهر شده گزینه‌ها مختلفی برای مشبندی وجود دارد. یا اینکه از مسیر Assign menu > Shell > Floor Auto Mesh Options آن را بصورت خودکار مشبندی نمایید.
در این حالت برای دیدن ابعاد و مشبندی انجام شده باید از مسیر View menu > Set Display Options گزینه Shell Analysis Mesh را تیک بزنید تا دیدن دیدن مشبندی امکان پذیر شود.
@AlirezaeiChannel
  • مهندس علیرضا خویه

 

 

ایجاد فاصله 2t به عنوان خط فرضی خمش جهت رفتار مفصلی در مهاربندهای همگرای معمولی نیازی نیست و تنها در مهاربندهای همگرای ویژه اجبار وجود دارد. در مهاربندهای همگرای ویژه نیز تنها در حالتی که کمانش مهاربند خارج صفحه رخ دهد، این الزام وجود دارد و در حالتی که کمانش داخل صفحه باشد باز نیازی نیست. برای دیدن جزئیات بیشتر می‌توانید به کتاب تحلیل و طراحی سازه‌های فولادی اینجانب مراجعه کنید.  اعمال این فاصله برای مهاربندهای واگرا اصلا نیازی نیست زیرا در این قاب عضو مهاربند نبایستی دچار کمانش شود.

 

@AlirezaeiChannel

  • مهندس علیرضا خویه
ضوابط دیوار برشی بتنی در یک قاب فولادی فرقی با سازه بتنی ندارد. تنها مورد بحث اتصال ستون های فولادی توسط گل میخ به بتن است
اگر دیوار را در ارتفاع مشبندی کنید برنامه آن را با ستون متصل شده فرض میکند و البته باید با دیوار هم Pier شود.
استفاده از دیوار برشی بتنی در سازه فولادی تا حدی موجب کاهش ابعاد مقاطع و اقتصادی تر شدن طرح می شود.
مطلب مرتبط:
 

http://etabs-sap.ir/%d8%af%db%8c%d9%88%d8%a7%d8%b1-%d8%a8%d8%b1%d8%b4%db%8c-%d8%a8%d8%aa%d9%86%db%8c-%d8%af%d8%b1-%d8%b3%d8%a7%d8%b2%d9%87-%d9%81%d9%88%d9%84%d8%a7%d8%af%db%8c-2/

  • مهندس علیرضا خویه

تحلیل حرارتی در Etabs

مهندس علیرضا خویه | | ۰ نظر
بارهای حرارتی وقتی که ابعاد سازه شما (یکی از اضلاع سازه) زیاد باشد، اثر تغییر شکل‌های ناشی از حرارات محیط افزایش یافته و بایستی اثر باری تحت این تغییر درجه حرارت سازه تحمل می‌کند را برای طراحی در نظر گرفت. نمونه بارز این مسئله در ریل راه آهن است که در قدیم برای اثرات انبساط در ریل آنها را به قطعاتی تقسیم می‌نمودند و با فاصله کمی از هم قرار می‌گرفت. در یک سازه با اضلاع طولانی نیز می‌توان از همین روش استفاده نمود و سازه را به بخش‌هایی تقسیم نمود تا اثر تغییرشکل‌ها محدود شود. فاصله بین دو سازه باید به میزان جابجایی ایجاد شده ناشی از دو سازه تحت تغییرات دما باشد. در صورتی که درز انبساط در نظر گرفته نشود، آنگاه بایستی سازه برای اثرات از بارهای حرارتی طراحی شود. طبق مبحث ششم، اثرات ایجاد شده ناشی از این بارهای حرارتی بایستی توسط دو ترکیب بار شماره 8 و 9 از ترکیب بارهای سازه‌های فولادی صفحه 16 و از ترکیب بارهای 6 و 7 سازه‌های بتنی صفحه 15 استفاده نمود. توصیه ASCE7-10 برای بارهای حرارتی به این صورت بوده و دو ترکیب بار زیر را پیشنهاد می‌دهد که مشابه مبحث ششم است:

❗️ When self-straining loads are combined with dead loads as the principal action, a load factor of 1.2 may be used. However, when more than one variable load is considered and self-straining loads are considered as a companion load, the load factor may be reduced if it is unlikely that the principal and companion loads will attain their maximum values at the same time. The load factor applied to T should not be taken as less than a value of 1.0.
When using strength design:

1.2D + 1.2T + 0.5L
1.2D + 1.6L + 1.0T
برای اعمال بار حرارتی بایستی کف طبقات از حالت صلب خارج شوند. در این حالت ممکن است برخی خروجی‌های برنامه مثل مرکز جرم وجود نداشته باشد که برای این موضوع می‌توانید دیافراگم را از نوع نیمه صلب (Semi Rigid) تعریف نمایید. در صورتی که دیافراگم صلب وجود داشته باشد، اثر بارهای حرارتی از بین خواهد رفت.
برای اعمال بارهای حرارتی به اجزای قابی بعد از انتخاب آنها از مسیر Assign menu > Frame Loads > Temperature اقدام می‌شود. در بخش Uniform Temperature Change  مقدار تغییرات دما بر حسب سانتیگراد وارد شود. اگر از واحدهای انگلیسی استفاده کرده باشید باید بر حسب فارنهایت وارد کنید. قبل از این کار از مسیر Define menu > Load Patterns یک حالت بار حرارتی بایستی ساخته شود. نوع این حالت بار را می‌توان از نوع Other انتخاب کرد و بصورت دستی در ترکیب بارهای مورد نظر نام برده شده در فوق قرار داد.
در سازه‌های بتنی، تیرها تنها برای لنگر M33 طراحی می‌شوند. بنابراین بارهای حرارتی که تولید نیروی محوری در آنها می‌کنند، اثری در طراحی ندارند مگر آنکه بارهای حرارتی تولید خمش کنند. برای این مورد می‌توان تیرها را بصورت ستون تعریف نمود و آن را در حالت گزینه Reinforcement to be Designed را انتخاب کرده و در بخش Number of Longitudinal Bars Along 2-dir Face عدد 2 را وارد نمایید تا میلگردها در لبه‌های بالا و پایین قرار گیرند.
طبق مبحث نهم در صورتی که نخواهیم تحلیل حرارتی انجام دهیم، طول سازه در مناطق خشک 25 متر، در مناطق معتدل 35 متر و در مناطق مرطوب 50 متر پیشنهاد شده است. مقدار حرارتی که بایستی اعمال شود، (تغییرات دما یا دمای ثانویه منهای دمای اولیه) برابر 60 درجه سانتیگراد است. برنامه هم از شما تغییرات دما را می‌گیرد.
یکی از مراجع قدیمی که متون جدید نیز به آن رجوع می‌دهند، Federal Construction Council's Technical Report No. 65 Expansion Joints in Buildings است که در ارتباط با بارهای حرارتی مطالبی دارد. به نظر می‌رسد مقادیری که مبحث نهم برای طول حداکثر سازه پیشنهاد داده به میزان زیادی محافظه کارانه باشد. شکل زیر از گزارش نامبرده شده اخیر است که اگر مقدار تغییرات دما را 60 درجه سانتیگراد (140 درجه فارنهایت) در نظر بگیریم، برای سازه‌های فولادی در شرایط منظم و مستطیلی حداکثر طول سازه 120 متر و برای دیگر سازه‌ها و یا سازه‌های نامنظم حداکثر طول 60 متر پیشنهاد شده است که از تمام مقادیر پیشنهادی مبحث نهم بیشتر است. البته این مقادیر درج شده در شکل برای حالتی بوده که سازه دارای تنها گرمایش داخلی بوده و ستون‌ها در پای خود مفصلی هستند. اگر ساختمان دارای تهویه مطبوع باشد طول مجاز را می‌توان تا 15% افزایش داد. اگر سازه گرمایش داخلی نداشته باشد مقادیر این شکل باید 33% کاهش داده شوند. در صورتی که ستون‌ها در پای خود بصورت گیردار باشند (مثل ستون‌های بتنی) مقادیر آن باید 15% کاهش داده شوند. اگر سختی جانبی سازه در یک جهت به میزان زیادی باشد (مثل سازه‌های دارای دیوار برشی) مقادیر این شکل بایستی 25% کاهش داده شوند.
اگر مطمئن باشیم که سفتکاری سازه در یک فصل و بدون تغییرات عمده دما تمام شده و تیرها و ستون‌های داخلی تحت شرایط محیطی شدید قرار نمی‌گیرند، می‌توان تنها پوسته خارجی سازه  را برای این بارهای طراحی نمود. در غیر اینصورت کل اجزای سازه بایستی برای بارهای حرارتی طراحی شوند.
@AlirezaeiChannel
 
http://etabs-sap.ir/thermal-analysis/
  • مهندس علیرضا خویه

محل مناسب مهاربندها

مهندس علیرضا خویه | | ۰ نظر

در قاب‌های مهاربندی شده همگرا، نیروهای طراحی به شدت به تعداد و مکان قرار گرفتن مهاربندها بستگی دارند. بهتر است

دهانه‌ای برای قاب مهاربندی شده انتخاب گردد که اولا بار ثقلی مناسبی روی ستون متصل به مهاربند وجود داشته باشد (دهانه‌های لبه‌ای چندان مناسب نیستند)

دوم آنکه دهانه طوری انتخاب شود که حتی المقدور زاویه مهاربند 45 در بیاید. مثلاً برای سازه‌های متعارف با ارتفاع طبقه حدود 3 متر، دهانه‌های 3 تا 4 متری برای مهاربندهای قطری و ضربدری و دهانه‌های 5 تا 6 متری برای مهاربندهای هشتی و هفتی مناسب هستند.

علاوه بر دهانه عمق تیر و ستون نیز مهم است. در شکل‌های زیر چند نمونه دتایل با مقیاس که در آنها ابعاد تیر و ستون و زاویه مهاربند متفاوت هستند، نشان داده شده است. در شکل اول تیرها دارای عمق زیادتری نسبت به ستون‌ها هستند. در این حالت، در صورتی که زاویه مهاربند با افق کم باشد، ابعاد ورق بسیار بزرگ خواهد شد. در صورت زاویه زیاد مهاربند، ابعاد ورق‌ها منطقی‌تر خواهد بود. همانطور که از شکل دوم دیده می‌شود، در صورتی که ابعاد تیر و ستون تقریبا برابر باشند، بهترین زاویه برای ورق، در زاویه مهاربند برابر 45 درجه رخ می‌دهد.

 

 

 

 

 

@AlirezaeiChannel

  • مهندس علیرضا خویه

کلاس آموزش سپ SAP2000

مهندس علیرضا خویه | | ۰ نظر

کلاس آموزش سپ SAP2000

دوره های تخصصی آموزش Sap2000
مقدماتی و پیشرفته

مدرس: علیرضا خویه

  • مهندس علیرضا خویه

تدریس خصوصی ETABS و SAP2000

مهندس علیرضا خویه | | ۰ نظر


علیرضا خویه
کارشناسی ارشد مهندسی زلزله - دانشگاه خواجه نصیرالدین طوسی
مدرس دوره های تخصصی Etabs-SAP2000-Safe
آموزش و تدریس ایتبز Etabs - تحلیل و طراحی سازه های فولادی و بتنی

  • مهندس علیرضا خویه