مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

فرمول فواصل خاموت ها

مهندس علیرضا خویه | | ۰ نظر

جزئیات داده در بند 9-15-3 ضوابط غیرلرزه‌ای و ضوابط بند 9-23-3-1-2-5 ضوابط لرزه‌ای است. در عضوی که برای بارهای زلزله بایستی طراحی شود، بدترین این دو بند بایستی ملاک قرار گیرد. در بیشتر حالات محدودیت‌های ضوابط لرزه‌ای حاکم هستند.
 

  • مهندس علیرضا خویه

طول گیرایی میلگردهای کششی طبق رابطه 9-21-1 از مبحث نهم تعیین می‌شود. این رابطه می‌تواند کاربردهای زیادی داشته باشد. مهمترین کاربرد آن تعیین طول وصله میلگردها کششی است که طبق بند 9-21-4-2-1 در وصله‌های پوششی، طول پوشش باید حداقل 1.3Ld باشد. خلاصه روابط طول مهاری میلگردها در شکل زیر نشان داده شده است.
 
[caption id="attachment_3819" align="alignnone" width="1280"] طول گیرداری و وصله ی میلگرد
روابط و فرمول های طول وصله میگرد و طول گیرداری میلگرد، طول خم میلگرد[/caption]

  • مهندس علیرضا خویه

نیروی قائم زلزله

مهندس علیرضا خویه | | ۰ نظر

در بند 3-3-9 استاندارد 2800، به نیروی قائم زلزله پرداخته شده است:
الف) کل ساختمان‌هایی که در پهنه با خطر نسبی خیلی زیاد واقع شده‌اند.
ب) تیرهای بیش از 15 متر
پ) تیرهایی که بار قائم متمرکز قابل توجهی دارند.
ت) بالکن‌ها
در 2800 تفکیکی صورت نگرفته که اگر سازه‌ای شامل حالت الف می‌شود، آیا حالت (ب) تا (ت) نیز شامل آن می‌شود یا خیر. لیکن به نظر شخصی اینجانب نیازی نیست و اعمال دو بار، نیروی زلزله به یک عضو بی‌مورد است. بنظرم بند‌های (ب) تا (ت) حساسیت بی مورد 2800 در مورد بار قائم است که به نوعی می‌خواسته روش سنتی اعمال بار قائم زلزله از ویرایش قبلی حفظ شود. آیین‌نامه ASCE7-10 خیلی راحت‌تر بار قائم را در نظر می‌گیرد:
12.4.2.2 Vertical Seismic Load Effect
The vertical seismic load effect, Ev, shall be determined in accordance with Eq. 12.4-4 as follows:
Ev = 0.2*SDS*D
SDS = design spectral response acceleration parameter at short periods obtained from Section 11.4.4
D = effect of dead load
در واقع ASCE7-10 تنها بند (الف) 2800 را پوشش می‌دهد.
منبع: کانال دکتر علیرضایی

  • مهندس علیرضا خویه

ضوابط شکل پذیری متوسط

مهندس علیرضا خویه | | ۰ نظر

ضوابط سازه های با شکل پذیری متوسط:
اعضای تحت خمش در قاب ها:
خاموت گذاری در تیر ها:
اگر فاصله دو میلگرد طولی بیشتر از ۱۵۰ میلیمتر باشد , باید توسط خاموت به هم متصل شوند.
طول قسمت های بحرانی در تیرها:
دو برابر ارتفاع مقطع
فاصله خاموت ها در ناحیه ویژه:
کمترین مقادیر زیر:
d/4
۸ برابر قطر آرماتور طولی
۲۴ برابر قطر خاموت
۳۰۰ میلیمتر
فاصله خاموت ها در سایر قسمت های تیر:
d/2
اعضای تحت فشار و خمش در قاب ها:
خاموت گذاری در ستون ها:
طول ناحیه بحرانی در ستون ها:
بیشترین مقادیر زیر:
L/6
بعد بزرگتر ستون
۴۵۰ میلیمتر
فاصله خاموت ها در ناحیه بحرانی:
کمترین مقادیر زیر:
نصف کوچکترین بعد مقطع
۸ برابر قطر آرماتور طولی
۲۴ برابر قطر خاموت
۲۵۰ میلیمتر
فاصله اولین خاموت، نصف مقدار بالا است.
در محل اتصال ستون به شالوده باید در طول حداقل ۳۰۰ mm در داخل پی ، با آرماتور های عرضی (با فاصله خاموت ها در ناحیه بحرانی) تقویت گردد.
ضوابط سازه های با شکل پذیری زیاد:
اعضای تحت خمش در قاب ها :
خاموت گذاری در تیر ها:
فاصله آرماتور های عرضی دربرگیرنده وصله:
کمترین مقادیر زیر:
d/4
۱۰۰ mm
طول قسمت های بحرانی در تیرها:
دو برابر ارتفاع مقطع
فاصله خاموت ها در ناحیه ویژه:
کمترین مقادیر زیر:
d/4
۸ برابر قطر کوچکترین میلگرد طولی
۲۴ برابر قطر خاموت
۳۰۰ میلیمتر
فاصله خاموت ها در سایر قسمت های تیر:
d/2
اعضای تحت فشار و خمش در قاب ها:
خاموت گذاری در ستون ها:
طول ناحیه بحرانی در ستون ها:
بیشترین مقادیر زیر:
L/6
بعد بزرگتر ستون
۴۵۰ میلیمتر
فاصله خاموت ها در ناحیه بحرانی:
کمترین مقادیر زیر:
¼ کوچکترین بعد ستون
۸ برابر قطر کوچکترین میلگرد طولی
۱۲۵ میلیمتر
فاصله خاموت ها در سایر قسمت های ستون:
کمترین مقادیر زیر:
½ کوچکترین بعد ستون
۶ برابر قطر کوچکترین میلگرد طولی
۲۰۰ میلیمتر

  • مهندس علیرضا خویه

کنترل های طراحی در Etabs

مهندس علیرضا خویه | | ۰ نظر

به هیچ عنوان نمی‌توان کنترل‌هایی را بصورت خاص برای تمام پروژه‌ها بیان نمود ولیکن بصورت کلی می‌توان به مواردی که می‌توان در ETABS آنها را کنترل‌نمود، به شکل زیر اشاره کرد. برخی از این موارد ممکن است، در برخی پروژه‌ها کاربردی نداشته باشد و یا در برخی پروژه‌ها نیاز به کنترل‌های خاص‌تری باشد.
1- بررسی نامنظمی پیچشی زیاد و شدید، نامنظمی طبقه نرم و خیلی نرم، نامنظمی طبقه ضعیف.
2- بررسی کنترل جابجایی طبقات.
3- کنترل دوره تناوب تحلیل و مقایسه آن با دوره تناوب تجربی.
4- کنترل لنگر واژگونی سازه.
5- کنترل مولفه قائم نیروی زلزله در بالکن‌ها
6- کنترل دیافراگم جهت صلبیت کف.
7- بررسی ضریب نامعینی سازه.
8- در صورت انجام تحلیل دینامیکی، کنترل کفایت تعداد مودهای نوسانی مورد استفاده.
9- کنترل کفایت تعداد سعی و خطاهای انجام شده در تحلیل P-Delta
10- کنترل بارهای ثقلی قرار داده شده بر روی سازه.
11- کنترل درصد آرماتور تیرها و ستون‌ها (در سازه‌های بتنی)
12- کنترل ستون‌ها برای ترکیب بارهای تشدید یافته (در سازه فولادی)
13- کنترل سازه برای زلزله بهره‌برداری (در صورت نیاز)
14- بررسی همپایه بودن برش پایه استاتیکی و دینامیکی.
15- بررسی خطاهای احتمالی در حین تحلیل و رفع آنها.
 
@AlirezaeiChannel دکتر علیرضایی

  • مهندس علیرضا خویه

در تحلیل استاتیکی این قابلیت وجود دارد که نیروی برشی زلزله (مثلا در سازه های دارای دیوار حائل) از تراز روی دیوار حائل اعمال شود ،اما در تحلیل دینامیکی این امکان وجود ندارد، مشکل کجاست و راه حل چیست؟
در پاسخ باید گفت در تحلیل استاتیکی، وقتی تراز پایه را به روی دیوارهای حائل بیاوریم، در واقع جرم لرزه‌ای زیر تراز پایه را مشارکت نداده‌ایم و در همپایه سازی با برش پایه دینامیکی نیز این اثر را لحاظ نموده‌ایم. توجه شود که در تحلیل دینامیکی، معیار برش پایه، همان برش پایه استاتیکی است و نه برش پایه دینامیکی و تنها از توزیع بارهای دینامیکی استفاده می‌کنید. در این حالت همپایه سازی در همان نقطه که تراز را به عنوان تراز پایه در نظر گرفته‌اید، انجام دهید. توجه شود که در این حالت جابجایی مودی برای طبقاتی که دیوار حائل دارند، بسیار ناچیز است.نکته مهم بعدی اینکه، در اکثر مواقع شرایط بند 3-3-1-2 اقناع نشده و قادر به بالا آوردن تراز پایه نیستیم. در خیلی از موارد اما می‌توان، از مفاد بند 3-3-5-9-2 (حالت خاص ترکیب سیستم‌ها در ارتفاع) استفاده نمود و تراز پایه را از روی دیوار حائل متصور شد. طبق ضوابط این بند، شما باید بخش بالایی را با پای گیردار و بصورت مجزا تحلیل نمایید و اثر عکس‌العملی بخش بالایی را بر روی قسمت پایینی را رعایت ضوابط این بند، به بخش پایینی اعمال نمایید. پس در این حالت مشکلی در تحلیل #دینامیکی نیز نخواهید داشت.
 
در حالتی که شرایط بند 3-3-5-9-2 برقرار باشد، می‌توانید گره‌های روی تراز پایه (روی دیوار حائل را مقید کنید):
در صورتی که سه شرط زیر برآورده شود می‌توان از روش دو مرحله‌ای جهت تحلیل سازه استفاده نمود.
قسمت بالایی سازه نرم‌تر از قسمت تحتانی آن باشد،
میانگین سختی قسمت پایینی 10 برابر میانگین سختی قسمت بالایی باشد.
دوره تناوب کل سیستم بیش از 1.1 برابر دوره تناوب قسمت بالایی نباشد.
توجه: در بند ب این مورد در استاندارد 2800 به اشتباه نوشته شده، #دوره_تناوب کل سیستم بیش از 1.1 برابر دوره تناوب قسمت بالایی «باشد» که صحیح آن عبارت «نباشد» است و در 2800 این کلمه غلط ویرایشی است. آن را اصلاح کنید.
منبع: کانال دکتر علیرضایی @AlirezaeiChannel

  • مهندس علیرضا خویه

سه روش برای طراحی دیوار برشی وجود دارد:
1-روشSimplified T , C روش تبدیل لنگر و نیروی محوری دیوار به دو ستون که به روش المان مرزی معروف است و بصورت دستی نیز قابل انجام است.در این روش میبایست حداکثر درصد فولادی کششی و فشاری المان های مرزی برای طراحی اجزای لبه ای برابر 0.03 همانند ستون های معمولی تعریف گردند.این روش با توجه به عدم در نظر گرفتن میانه دیوار برای تحمل لنگر وارده در طبقات در جهت اطمینان است.(جان تنها برش را تحمل مینماید)
2- روش Uniform Reinforcing که روش میلگرد گذاری یکنواخت است و دورتادو دیوار از یک میلگرد یکنواخت استفاده میشود و بیشتر برای دیوارهای مستطیلی که در دو لبه خود دارای ستون نیستند مناسب است.
3- General Reinforcing که در این روش با استفاده از Section Designer مقطع دیوار ساخته شده و به دیوار ها اختصاص داده میشود و سس طراحی یا کنترل برای هر نوع دیواری انجام میپذیرد.
حداکثر و حداقل درصد میلگرد قائم دیوار مطابق آیین نامه آبا به ترتیب 0.04 (با رعایت محل وصله=0.02 ) و 0.0025 میباشد.
کنترل المان مرزی:
طبق آیین نامه میتوان اجزای لبه ای را در محل هایی که تنش فشاری دیوار کمتر از 0.15 fc می شودقطع کرد.چنانچه این ضابطه رعایت نگردد میتوان ضخامت پوسته دیوار را افزایش داد.
برای مدل کردن اثر دیوار برشی در پی میتوانید از تیر عمیق که عمق آن برابر ارتفاع دیوار و عرض آن هم ضخامت دیوار است استفاده کنید.لازم به ذکر است درصورت شبکه بندی دیوار برشی در Etabs با انتقال نتایج به Safe برنامه یکسری تیر عمیق به ارتفاع دیوار و عرض آن در محل دیوار برشی ایجاد و نیروهای دیوار را در محل گره های محل شبکه بندی دیوار منتقل میکند

  • مهندس علیرضا خویه

فیلم ورکشاپ مدلسازی تحلیل و طراحی دیوار برشی فولادی به همراه تشریح عملکرد و بررسی برخی مقالات و موضوعات جدید مطرح شده در این زمینه
این ورکشاپ توسط گروه آموزشی پولاد سازه برگزار شده است. مدرس این دوره: دکتر پروینی می باشد.
همراه با فیلم آموزشی، فایل pdf ورکشاپ نیز موجود می باشد
**پیشنهاد ویژه دانلود
 

حجم فایل: 289 مگابایت
مدت زمان فیلم: 2ساعت و 18 دقیقه
 

  • مهندس علیرضا خویه

ستون مرکب فولادی – بتنی CFT

مهندس علیرضا خویه | | ۰ نظر

مزایای ستون مرکب فولادی – بتنی
محل بهینه مقطع فو‌لادی
در ستون‌های CFT به علت قرارگیری جدار فو‌لادی در پیرامون مقطع درست در جائی که تنش‌های خمشی و کششی بیشتر موثرند، باعث افزایش قابل توجهی در سختی و مقاومت مقطع می‌شود. در ستون‌های SRC‌، محل قرارگیری خود عاملی بر نصب سریع ستون است.
مقاومت خمشی بالا در اتصال تیر به ستون‌ در ستون‌های مرکب SRC
به دلیل اینکه ستون و تیر در این نوع از ستون مرکب توسط بتن مسلح دورگیری می‌شود، سختی دورانی به دلیل انتقال بار بین تیر و بتن در چشمه اتصال افزایش می‌یابد. همچنین مقاومت خمشی قابل تحمل اتصال دارای ظرفیت بیشتری از اتصال فو‌‌لادی اولیه (بدون مسلح) است.
تأخیر در کمانش موضعی
در مقاطع مرکب، ستون فو‌لادی (فشرده، غیرفشرده‌) به علت تماس با بتن سفت شده، سختی بیشتری می‌یابد و کمانش در آن به تأخیر افتاده یا اتفاق نمی‌افتد. بنابراین تا زمانی که تماس بین بتن و فو‌لاد کاهش یاب،‌مثل ترک خوردن بتن یا جداسازی بتن و فولاد، کمانش به تأخیر خواهد افتاد. البته در ستون‌های CFT با ترک خوردن بتن به علت جلوگیری از انبساط بیش از حد بتن توسط جدار فو‌لادی، همچنان تماس بین بتن و فو‌لاد برقرار خواهد بود. بنابراین هسته بتنی مدهای کمانش جانبی را به سمت بیرون انتقال می‌دهد، از این رو از مقاطع فو‌لادی نازکتر به دلیل اطمینان از رسیدن مقاومت تسلیم در جدار قبل از وقوع کمانش استفاده می‌شود.
محصور شدگی بالا در بتن
مقاطع فو‌لادی باعث افزایش محصور شدگی در هسته بتن و به دنبال آن افزایش مقاومت و شکل پذیری در بتن می‌شوند. به علت شکل مقطع و تنش حلقوی ایجادی یا تنش کمربندی‌، مقاطع دایروی از ستون‌های CFT‌‌) CCFT‌) ایجاد محصور شدگی بیشتری نسبت به مقاطع مستطیلی CFT)RCFT‌) و مقاطع SRC می‌کنند.
صرفه جویی در هزینه‌های ساخت
درCFT تیوب فو‌لادی نقش یک قالب ماندگار برای بتن ایفا می‌کند و این موضوع سبب کاهش هزینه‌های انسانی و مصالح می‌شود. سرعت ساخت با روش CFT خصوصاً در ساختمان‌های متوسط تا بلند مرتبه بسیار بیشتر است. هزینه خود اعضا در مقایسه با سازه فولای بسیار کمتر است‌، تقریباً هزینه CFT برابر با هزینه اعضای بتن مسلح است. همچنین در مقایسه با قاب خمشی فو‌لادی،در قاب مهاربندی نشده CFT‌، میزان صرفه جوئی در فولاد با افزایش طبقات افزایش می‌یابد. جزئیات اتصال نسبتاً ساده تیر به ستون قوطی می‌تواند به کار برده شود. این موضوع سبب کاهش هزینه‌ها و سهولت طراحی، می‌شود‌.
با استفاده از بتن پرمقاومت، CFT‌ها نسبت به ستون‌های متداول بتن آرمه در هر فوت مربع قوی‌تر هستند. جائی که مقاومت زیاد مورد نظر است، سایز کوچکتری از ستون می‌‌تواند طرح شود و فضای مفید ساختمان افزایش یابد‌. اسکلت کوچکتر و سبکتری بر روی فونداسیون قرار می‌گیرد. که مجدداً سبب کاهش هزینه‌ها خواهد شد.
ضد آتش
در مقاطع مدفون در بتن، بتن به عنوان یک محافظ مقطع فو‌لادی در برابر آتش سوزی عمل می‌کند.

  • مهندس علیرضا خویه

موارد اعمال بار قائم زلزله

مهندس علیرضا خویه | | ۰ نظر

اساس آیین نامه 2800 ویرایش چهارم در موارد زیرباید بار قایم زلزله اعمال شود
– کل سازه ساختمانهاییکه در پهنه با خطر نسبی خیلی زیاد واقع شده اند
- تیرهاییکه دهانه آنها بیش از پانزده متر می باشد همراه با ستونهاو دیوارهای تکیه گاهی آنها
- تیرهاییکه بار قایم متمرکز قابل توجهی در مقایسه با سایر بارهای منتقل شده به تیر را تحمل می کنند
همراه با ستونها و دیوارهای تکیه گاهی آنها که بار متمرکز حداقل را با نصف مجموع بار وارده به تیر باشدآن بارقابل توجه تلقی می شود .
-بالکن ها و پیش آمدگی هاییکه بصورت طره ساخته می شوند

  • مهندس علیرضا خویه