مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

مهندسی عمران Civil Engineering | آموزش و دانلود PDF | AutoCAD , Etabs ,SAP2000

آموزش حامع مباحث مهندسی عمران و سازه | آموزش نرم افزارهای AutoCAD , Etabs ,SAP2000

۵ مطلب با کلمه‌ی کلیدی «طراحی دیوار برشی» ثبت شده است

فایل اکسل تعیین ضرایب اصلاح سختی خمشی و برشی دیوارهای برشی در سازه های بتن آرمه

Modified Crack coefficient of Shear Wall [ Etabs-SAP.ir ]
 
 

 

  • مهندس علیرضا خویه

انتخاب محل دیوارهای برشی

مهندس علیرضا خویه | | ۰ نظر

Blog950425 - Best Placement of Shear Walls 000
دیوارهای برشی بتنی اغلب در ساختمانهای اسکلت بتنی دیده می‌شوند. این دیوارها به مانند تیرهای عریض عمودی می‌باشند که بارهای جانبی ناشی از زلزله یا باد را از طبقات مختلف به سمت فونداسیون هدایت می‌نمایند. بطور متداول ضخامت این دیوارها با توجه به ارتفاع ساختمان از ۱۵۰ تا ۴۰۰ میلیمتر متغیر بوده و بصورت پیوسته از روی فونداسیون تا سقف طبقه آخر گسترش می‌یابند.
بعضی از دیوارهای برشی در دو انتهای خود با ستونهای ساختمان یکپارچه می‌شوند که در این حالت عموما ستونها (یا همان المانهای مرزی) وظیفه انتقال بارهای ثقلی و دیوار وظیفه انتقال بارهای جانبی را برعهده خواهد داشت.
Blog950425 - Best Placement of Shear Walls 001
دیوارهای برشی مقاومت و سختی سازه را در راستای محور طولی خود افزایش چشمگیری می‌دهند و جابجایی‌های سازه را بطور قابل توجهی کاهش می‌دهند. در این مقاله به بررسی سه مدل از پر کاربردترین مدل‌های چینش دیوار برشی در پلان ساختمانهای با ارتفاع متوسط [Mid-Rise] پرداخته شده است.
تا جای امکان مرکز هندسی ساختمان بر مرکز هندسی مجموع دیوارهای برشی در دو جهت متعامد، منطبق باشد تا لنگرهای پیچشی بزرگ در ساختمان ایجاد نگردد.
ضمن رعایت مورد ۱، مرکز هندسی هر دیوار تا جای امکان از مرکز هندسی ساختمان فاصله داشته باشد تا در برابر پیچش سازه بخوبی مقاومت کند.
از تعبیه دیوار برشی در پیرامون بازشوها احتراز گردد. زیرا موجب توزیع تنش شدید و غیر یکنواخت در ناحیه اتصال بین دیوار و دال کف می‌شود.
از تعبیه دیوار برشی با طول کم پرهیز گردد. در این حالت لنگر بسیار زیادی در پای دیوار ایجاد شده و منجر به افزایش بی دلیل آرماتور در آن ناحیه از فونداسیون می‌شود.
برای انجام مقایسه، مواردی که در بالا اشاره شد، در یک ساختمان ۵ طبقه بصورت کلی رعایت شده و طول دیوارها در دو جهت X و Y مساوی و برابر ۱۰ متر انتخاب شده است. در شکل زیر پرسپکتیو سه طرح مزبور از چیدمان دیوار نشان داده شده است.
Blog950425 - Best Placement of Shear Walls 002
Blog950425 - Best Placement of Shear Walls 003
Blog950425 - Best Placement of Shear Walls 004
Blog950425 - Best Placement of Shear Walls 005

مقاومت در برابر پیچش سازه:
طبق بند ۲ ذکر شده در نکات کلی ، هر چه مکان هندسی دیوارها به مرکز هندسی سازه نزدیک تر باشد توان مقابله آن با لنگرهای پیچشی ضعیف تر می‌گردد. پس مدل ۱ از لحاظ مقاومت در برابر پیچش ضعیف بوده و مدل ۲ و ۳ مقاومت تقریبا برابر و قابل قبولی را از خود نشان می‌دهند.
نیروی محوری ستونها در تراز پایه:
طی تحقیقات انجام گرفته، مدل ۳ تحت زلزله دارای کمترین و مدل ۱ دارای بیشترین نیروهای محوری در ستونهای طبقه اول خود می‌باشند [۱].
این مسئله را بدین صورت می‌توان توجیه نمود که ساختمان تحت نیروی جانبی مانند تیر طره تحت خمش عمل می‌کند که ستونهای خارجی آن بیشترین نیروهای محوری را جذب می‌کنند (مانند توزیع تنش خمشی در تیر). حال با جانمایی دیوارها مابین ستونهای خارجی، سهم اعظم نیروها از طریق دیوارها منتقل شده و کاهش چشمگیری در مقدار نیروی محوری ستونها رخ می‌دهد.
نیروی برشی ستونها در تراز پایه:
این مقدار در مدلها برای ستونهای داخلی و خارجی متفاوت بدست آمده است. برای ستونهای خارجی، کمترین برش بترتیب در مدلهای ۳، ۲ و ۱ رخ داده و برای ستونهای داخلی کمترین برش بترتیب در مدلهای ۱، ۳ و ۲ ایجاد شده است.
نتیجتا میانگین برش در کل ستونها در مدل ۳ حداقل می‌باشد.
لنگر خمشی ستونها:
در مدل ۱ که دیوارهای برشی بصورت متقارن در هسته مرکزی آن جانمایی شده است؛ کمترین مقدار لنگر در پای ستونها مشاهده شده است [۱].
علت این امر را می‌توان به فاز تغییر شکل ساختمان مدل ۱ مرتبط نمود. قرار دادن دیوارهای برشی در مرکز سازه موجب افزایش مقاومت ساختمان در برابر تغییر شکل برشی شده و ساختمان را در برابر تغییر شکل خمشی ضعیف می‌سازد. به همین علت در مدل ۱ در پای ستونها کمترین لنگرها ایجاد می‌گردد.
جهت آشنایی با فازهای تغییر شکل ساختمان، مقاله “مُدهای تغییر شکل الاستیک قاب خمشی تحت زلزله” را مطالعه کنید.
سختی سازه در برابر تغییر مکان جانبی:
کمترین تغییر مکان جانبی متعلق به مدل ۱ می‌باشد که دارای اختلاف مشهودی نسبت به مدل ۲ و ۳ است. طی مطالعات انجام گرفته جابجایی طبقه ۵ برای ۳ مدل مطابق جدول زیر می‌باشد [۱]:
Blog950425 - Best Placement of Shear Walls 006
بعلت فاز عملکرد برشی دیوارها در مدل ۱، سختی سازه افزایش چشمگیری داشته اما در مدل ۲ و۳ دیوارها فاز عملکرد خمشی داشته که موجب نرم تر شدن سازه شده است.
با توجه به جمیع موارد عنوان شده بین سه طرح چینش دیوار برشی در یک سازه مشابه، طرح ۲ با چیدمان متقارن پیرامونی بعلت مقاومت مناسب در برابر پیچش و سختی قابل قبول برگزیده خواهد شد.
رعایت نکات کلی در جانمایی دیوارهای برشی
معرفی سه طرح چیدمان دیوار
مدل ۱: دیوارهای برشی متقارن در هسته مرکزی
مدل ۲: دیوارهای برشی متقارن پیرامونی
مدل ۳: دیوارهای برشی متقارن معکوس پیرامونی
مقایسه عملکرد مدلها
نتیجه‌گیری

با توجه به جمیع موارد عنوان شده بین سه طرح چینش دیوار برشی در یک سازه مشابه، طرح ۲ با چیدمان متقارن پیرامونی بعلت مقاومت مناسب در برابر پیچش و سختی قابل قبول برگزیده خواهد شد.

[۱] www.ijera.com/special_issue/AET_Mar_2014/CE/Version%20%202/G3538.pdf

[۲] www.esatjournals.net/ijret/2014v03/i09/IJRET20140309055.pdf

[۳] www.irjet.net/archives/V2/i4/Irjet-v2i440.pdf

منبع:://structech.ir/

  • مهندس علیرضا خویه

1- عنوان کامل دوره

محاسبات دستی سازه های بتن آرمه

 

2- معرفی دوره

امروزه گسترش روز افزون سازه های بتنی بر کسی پوشیده نیست. عملکرد بسیار
مناسب و قابل انعطاف سازه های بتن آرمه در زلزله از جمله دلایل استقبال مهندسان
از این سازه ها می باشد. مطرح شدن مباحث جدید در طراحی سازه های بتن آرمه از
جمله طراحی لرزه ای، اهمیت  به روز رسانی
دانش مهندسی را دو چندان کرده است.

این دوره با پوشش کامل مباحث طراحی دستی اجزاء سازه های بتنی سعی در درک
بهتر فلسفه ی طراحی و آشنایی مهندسان با پشت پرده بندهای مبحث نهم مقررات ملی
دارد.

 

3- سرفصل­های دوره (لازم است که رئوس مطالب کلی نبوده و علاوه بر
ارائه عناوین فصول، عناوین زیرمجموعه­ی هر فصل به همراه مثال­های مطرح شده در هر
فصل درج گردد. لطفاً مدت زمان اختصاص یافته به هر مبحث به منظور پوشش کامل نیز قید
گردد.)

شماره فصل

سرفصل اصلی

سرفصل فرعی

مدت (ساعت)

1

طراحی تیر های
بتنی

بیان رفتار-
طراحی تیرهای مستطیلی
، T شکل و L
شکل- تحلیل و طراحی برشی و پیچشی تیرها

6

2

طراحی ستون ها

طراحی ستون های مستطیلی
و دایره ای
  تحلیل و طراحی تیرستون ها

4

3

طراحی دستی
دیوارهای برشی

تشریح طراحی و حل
مثال از تحلیل و طراحی دیوار های یکنواخت و غیر یکنواخت- طراحی دیوارهای برشی
همبند (کوپله)

5

4

طراحی دستی دال
ها

طراحی انواع دال
های یک طرفه و دو طرفه
کنترل برش پانچ

5

5

طراحی دستی
فونداسیون ها

تحلیل و طراحی
فونداسیون تک و گسترده

4

6

محاسبه و کنترل
خیز و ترک

محاسبه و کنترل
خیز و ترک در تیرها و دال ها

2

7

طراحی لرزه ای

آشنایی با مدل
های بتن محصور - طراحی لرزه ای تیرها بتنی - طراحی لرزه ای ستون های بتنی

8

مجموع:

34

4- تمامی فصول بر اساسی مبحث نهم مقررات ملی بیان می گردد اما تفاوت ها و
رویکردهای سایر آیین نامه های مطرح دنیا هم به تفصیل بیان می گردد

5- مخاطبین دوره:

مهندسین و دانشجویان مهندسی عمران

 

معرفی مدرس:

 مهندس علیرضا خویه

کارشناسی ارشد مهندسی زلزله- دانشگاه خواجه نصیرالدین طوسی

شماره تماس: 09382904800

ایمیل: khooyeh@live.com

 

توجه: این دوره در خانه ی فنون ارشد برگزار می گردد.

 
  • مهندس علیرضا خویه

تاثیر وجود دیوار برشی بتنی بر عملکرد لرزه ای سازه ها

در همه‌ی سازه‌ها و به خصوص در سازه‌های بلند، لازم است سختی مناسب برای مقاومت در مقابل نیروهای جانبی باد و زلزله فراهم شود. در غیر این صورت ممکن است هنگام اثر بارهای جانبی، تنش‌های بسیار زیاد و ارتعاش در اعضای مختلف ایجاد شود؛ به طوری که احساس ناراحتی شدید برای ساکنین ساختمان، و یا حتی آسیب‌های جدی برای ساختمان به وجود آورد. سختی جانبی مناسب برای مقاومت در مقابل بارهای جانبی ممکن است توسط قاب‌های خمشی، دیوارهای برشی، و یا ترکیب قاب خمشی و دیوار برشی ایجاد شود. دیوارهای برشی در حقیقت دیوارهای بتن آرمه‌ای هستند که از سختی داخل صفحه‌ای بسیار زیاد برخودار می‌باشند . این دیوارها مشابه یک تیر کنسولی قائم و عمیق عمل می‌کنند که برای ساختمان پایداری جانبی ایجاد نموده و در مقابل برش‌ها  و لنگرهای خمشی ناشی از بارهای جانبی مقاومت می‌کنند .دیوارهای برشی از آن جهت به این نام خوانده می‌شوند که قسمت عمده‌ی برش ناشی از نیروهای جانبی را تحمل کرده و به زمین انتقال می‌دهند. با این وجود، از آن جا که دیوارهای برشی مانند تیرهای طره‌ای قائم هستند، عملکرد اصلی آن‌ها "عملکرد خمشی‌" است و به همین جهت دیوار برشی چندان با عملکرد آنها هم سو نیست. در مقابل قاب‌های خمشی در مقابل بار جانبی بر خلاف نام " عملکرد برشی " داشته و با تغییر شکل برشی خود ، بارهای جانبی را به زمین انتقال  می‌دهند. در دیوراهای برشی با نسبت ارتفاع به طول کوچک، برش بیش از خمش حائز اهمیت است. در مقابل در دیوارهای برشی بلندتر، لنگر خمشی از اهیمت به مراتب بیش‌تری برخوردار است. به دلیل مشابهت عملکرد دیوارهای برشی با تیرهای عمیق، فولادهای برشی در آن ها هم به صورت افقی و هم به صورت قائم قرار داده می‌شوند. در دیوارهای برشی کوتاه‌تر ، فولادهای برشی افقی کم تر مؤثر بوده و فولادهای برشی قائم نقش مؤثرتری دارند . در مقابل در دیوارهای برشی بلندتر ، فولادهای برشی افقی تأثیر بیش تری در تحمل برش دارند .
چند نکته:
1- استفاده از دیوار برشی همیشه مناسب‌ترین روش نیست زیرا باعث تمرکز نیروی در نقاط خاصی از پی می‌شوند.
2- در سازه‌های بلند که دارای منظمی و دهانه‌های مناسب هستند، استفاده قاب خمشی ممکن است به طرح بهتری منجر شود مگر آنکه ملاحظه خاصی در ارتباط  با کنترل جابجایی مد نظر باشد.
3- در سازه‌های کوتاه‌تر از 4 طبقه استفاده از دیوار برشی در اغلب اوقات غیرمنطقی است.
4- در سازه های بلند وجود دیوار باشی باعث افزایش برش پایه میشود. این امر به دلیل افزایش سختی قاب است.

 


@AlirezaeiChannel

  • مهندس علیرضا خویه

1) بهتر است بطور کلی دیوار برشی بصورت Shell مدل شود. این ضرورت وقتی بیشتر می‌شود که بخواهیم دیوار را مشبندی کنیم. طبق توصیه برنامه نسبت ابعادی مش‌ها نباید از 1 به 4 بیشتر شود. بنابراین بهتر است مشبندی تا حد امکان مربعی باشند. در این حالت گره‌هایی در وسط دیوار ایجاد می‌شود و در صورتی که شما دیوار را Membrane مدل کرده باشید، بخاطر عدم عملکرد خارج از صفحه این المان، برنامه در محل گره‌های ایجاد شده در وسط دیوار دچار خطا می‌شود.

 

2) در برنامه ETABS المان‌های پوسته‌ای دارای دو نوع سختی هستند. یکی سختی درون صفحه (inplane stiffness) و دیگری سختی برون صفحه (out-of-plane stiffness). سختی درون صفحه توسط F11، F22 و F12 کنترل شده و سختی برون صفحه توسط M11، M22 و M12 کنترل می‌شود.
نکته: اگر از پیش‌فرض‌های برنامه مدلسازی را انجام داده باشید، در حین مدلسازی دیوار برشی، همیشه جهت محور محلی 2 به سمت بالا است، مگر آنکه کاربر آن را حول محور عمود بر صفحه 3، دوران داده باشد. بنابراین در اینجا فرض بر آن است که کاربر جهت محور محل دو را تغییر نداده است.

 

When drawing in ETABS the default is to have the 1 axis horizontal and the 2 axis vertical. This means that the flexural modifier for EI should be applied to f22 for wall piers and to f11 for spandrels. If you apply the modifier to both f11 and f22 it hardly affects the results.


در دیوار برشی رفتار خمشی و محوری به سبب مولفه‌های F11 و F22 و رفتار برشی توسط F12 تغییر می‌یابند. توصیه ACI318 نیز برای کاهش سختی خمشی (EI) دیوار بوده که بایستی مولفه‌های F11 یا F22 را کاهش دهیم.  هیچ توصیه‌ای برای کاهش سختی برشی یا F12 وجود ندارد. بنابراین بصورت یک نتیجه کلی اگر شما جهت محورهای محلی دیوار را دوران نداده‌اید، بایستی ضریب ترک‌خوردگی را به F22 اعمال نمایید. برای تیرهای تیغه اما بایستی این ضریب به F11 اعمال شود.


3) برای اینکه دیوارها طراحی شوند باید آنها را نامگذاری کنید در غیر اینصورت طراحی نمی‌شوند. نام دیوارها می‌تواند در طبقات مختلف یکسان باشد. مثلا می‌توانیم از یک نام P1 برای یک دیوار در طبقات مختلف استفاده کنیم ولی یک نام نمی‌تواند بیش از یکبار در یک طبقه تکرار شود. اگر مجموعه‌ای از دیوارها را که به هم متصل هستند را به یک نام قرار دادین، آنگاه آنها بصورت یک دیوار مستقل طراحی می‌شوند. در حین طراحی نیروهای ایجاد شده در اجزای موجود در دیوار با هم جمع می‌شوند.

 

@AlirezaeiChannel

  • مهندس علیرضا خویه